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Preface

These notes on photovoltaic solar energy conversion result from lectures given
to graduate students in the Physics Department of Carl von Ossietzky University
Oldenburg over the last two decades, the aim being to increase the number of
young people getting expertise in ‘photovoltaics,’ to motivate young colleagues
and graduate and Ph.D. students in physics, chemistry, and eventually electrical
engineering, as well as researchers involved in basics and applications of these dis-
ciplines, to reflect upon the conversion of solar light with fundamental concepts, to
ask themselves questions, and to try to find consistent answers on how photovoltaic
solar energy conversion works and contribute successfully to its progress. If senior
scientists and colleagues interested in or already working in the field also find here
some new aspects of the problem, this would be a further positive point.

The contents of these notes have been developed on the basis of contributions
in the form of textbooks by two well-known experts, in particular A. deVos
(Endoreversible Thermodynamics for Solar Energy Conversion) and P. Würfel
(Physics of Solar Cells), and have been garnished by some of my own ideas on
how to understand and visualize the microscopic physical mechanisms and effects.

These personal ideas have, of course, been influenced by contacts, feedback, and
very fruitful discussions and collaborations with friends and colleagues over the last
few decades, including in particular Peter Würfel and Tom Markvart, as well as
Gion Calzaferri, Reinhard Carius, Jean-François Guillemol, Wolfram Jägermann,
Jean-Paul Kleider, Uwe Rau, Harald Ries, Helmut Tributsch, and many others not
explicitly listed here. I am grateful for the opportunity to meet and exchange ideas
and concepts with numerous attendees of conferences, workshops, and meetings on
general physics, on photovoltaics and solar energy conversion, and I must not forget
the stimulus of questions and comments from my closer scientific environment
during my stay at Carl von Ossietzky University in Oldenburg, including in
particular Dr. Rudi Brüggemann and my Ph.D. and diploma students.

The impetus to compile this contribution came from Dr. C. Caron at Springer.

Oldenburg, Germany and Soubès, France G.H. Bauer
January 2015
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" Emissivity, dielectric susceptibility, etendue
"0 Vacuum dielectric susceptibility
� Independent variable, Riemann’s zeta-function
� Conversion efficiency
�C Carnot efficiency
� Angle
� Wave length
	 Chemical potential
	n Mobility of electrons
	;	0 Magnetic permeability of matter, in vacuum

 Spatial position, independent variable
� pi (3.141592)
� Radius, space charge
�SB Stefan–Boltzmann constant (5:67 � 10�8 (Ws/m2 K4))
�; k Relaxation time for energy, for wave vector
rec Recombination lifetime
' Angle, electrical potential
� Electron affinity
�el Electron polarization function
 Electrostatic energy (e.g. for band bending in space-charge regions)
! Frequency

� General flux, Gamma function
��; �� Energy flux, particle flux
� Difference
4 Delta operator (4 D 52)
�p;�n Excess concentration of holes (in VB), and electrons (in CB)
5 Nabla operator
� Angle
˚ Electrostatic energy (˚ D e � ')
� Electron wave function
˝ Solid angle



Chapter 1
Introduction

The direct conversion of solar light into electrical energy is one option for the use
of renewable energies. Since the life expectancy of our source of radiation, the Sun,
amounts to another 4.5 billion years, the reservoir of solar radiation is effectively
inexhaustible to individual human beings. In the middle and long term future, it will
represent the only driving force for departures from thermal-equilibrium conditions,
e.g., for biological life on our globe.

At the present time, recognition of the need to use solar energy is growing rapidly,
both nationally and internationally, and the technical exploitation of solar energy is
in turn expanding at a significant rate. In the context of these growing activities,
more and more well educated experts will be required with fundamental knowledge
of the principles and limitations of solar light conversion, and with the ability to
implement innovative technical concepts and solutions in the design and realization
of devices.

This survey of the principles of photovoltaic solar energy conversion has been
based upon fundamental relations and seeks to accord with basics of physics
presented in undergraduate and graduate courses, such as thermodynamics and
statistical physics, the physics of atoms and molecules, quantum mechanics and
solid state and semiconductor physics. Although these subjects do not constitute an
inescapable precondition for understanding the book’s message, a sound knowledge
of them would definitely be helpful.

As a consequence of the spectral distribution of solar photons resulting from
an emitter in thermal equilibrium at a certain temperature (TSun), whose energy
is to be converted in an absorber at a (substantially lower) temperature, e.g.,
TEarth, thermodynamic and statistical physics relations need to be introduced into
formulations of the performance and fundamental limits of solar energy conversion.
In other words, as long as ensembles of particles or quasi-particles, such as
photons, electrons and holes, excitons, or phonons, are involved in processes and
effects, their respective distributions in energy and/or wave vectors have to be
taken into account, and those distributions (i.e., Boltzmann, Fermi-Dirac, Bose-
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2 1 Introduction

Einstein distribution functions) contain the variable ‘temperature’.1 Furthermore,
thermodynamic relations enter the formalism through the dependence of energy
and entropy fluxes on temperature, as well as through entropy production by
interactions of the transport medium photons with matter, i.e., absorption, emission,
or scattering.

The notes presented here have been established on the basis of these approaches,
as formulated in great detail in the textbooks of A. deVos [1] and P. Würfel [2, 3].
They are supplemented by concepts designed to help the reader to understand and
visualize the microscopic physical mechanisms and effects underlying photovoltaic
solar energy conversion.

This introduction and a brief chapter on the global energy situation are followed
by Chap. 3 which contains a short discussion on the source of solar radiation, the
Sun, as a thermal-equilibrium radiator (Planck’s law), and some related optical
properties of radiation, such as its spectral distribution, energy and entropy fluxes.

Chapter 4 discusses the principles and associated formulations of limits for the
use of solar radiation, first in thermal absorbers, this being ascribed to ‘endore-
versible thermodynamics’ [1], and second, in electronic band systems such as
semiconductors or accumulations of molecules, in which light is generating a photo-
excited state that departs from the one at thermal equilibrium. The motion of these
photo-excited states towards the boundaries of the absorbing system is understood
as resulting from asymmetric electronic properties and leads to the limit for a single
band gap configuration due to Shockley and Queisser [4].

Chapter 5 summarizes the most important real electronic systems with a dis-
cussion of the photogeneration of species and their relative spatial separations,
and hence their motions in different directions, which is generally referred to as
charge separation. This effect is initiated by an asymmetry of source and sink for
the photogenerated carriers. Using this approach, we avoid the confusion raised by
an often erroneously introduced function of an electric field.2

In Chap. 6, we explore approaches that go beyond the Shockley–Queisser limit
either by exploiting effects that make better use of photon energies exceeding the
single band gap absorption, or by modifying photon energies and manipulating the
coupling of solar light in absorbers and/or manipulating the coupling of outgoing
luminescence photons.

Finally, the appendixes at the end of the book recall some important relations
from semiconductor and solid state physics which are also often applied to describe
functions of electronic level systems for solar light conversion.

1Here we assume that, despite the departure from thermal equilibrium, due to fast energy and
momentum relaxation compared to relaxation to the ground states, a maximum entropy distribution
in the respective excited states is established which allows for the introduction of a skalar variable
‘temperature’.
2The driving force is in fact the gradient of the chemical potential of relevant species. A general
argument in favor of this viewpoint is also represented by reference to the Schrödinger equation,
in which forces do not occur but instead the dependence on potentials emerges.
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Chapter 2
Global Energy Situation

2.1 Primary Energy Resources

The main global primary energy resources consist of the traditionally used fossil
fuels, such as coal, oil, and natural gas, which in the last century have substantially
replaced wood, and which have notably been supplemented by nuclear ‘fuels’ (238U)
within the last couple of decades, due to a considerable increase in global primary
energy needs.

Solar energy is the driving force for almost all types of ‘renewable energy’. The
input to the outer atmosphere of our globe amounts to 175,000 TW (see Fig. 2.1)
and exceeds the present global primary energy requirement per unit time of about
15 TW by four orders of magnitude.

With an assumed technically usable fraction of only 1 % and a hypothetical
overall conversion efficiency of solar light of � D 10�2, solar radiation would
theoretically be sufficient to provide for the primary energy needs of the world, even
with further population growth. However, the use of that amount of solar light would
have enormous impacts on the global average temperature and thus on the global
climate. Despite the fact that solar radiation is available in such huge amounts, for
environmental reasons mankind may well be unable to exploit it in the way that
primary energies have been used so far.

Amongst all types of light reaching the Earth’s surface, such as from stars, from
the Moon, solar radiation is by far predominant and is entering almost exclusively
into the entire global energy flow balance. Behind solar radiation with Prad; surf D
89,000 TW, the theoretical potential of wind energy (Pkinet: air D 400TW) and of
biomass (Pbiosphere D 100TW), each of them also driven by solar radiation are
the next candidates for renewable energy utilization; in comparison with these, the
theoretical potential of hydraulic power is relatively small (Phydro D 5TW) ([1–3]
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6 2 Global Energy Situation

Fig. 2.1 Global energy flow budget. Numbers in TW. Data from [1]

and see Fig. 2.2 for details).1 Of course, for each of these theoretical potentials, the
so-called technically usable part amounts to a substantially smaller fraction only.

2.2 Primary Energy Demand

The present global primary energy demand per time amounts to about 15 TW.
Divided amongst 7 � 109 human beings, this implies an average value of
2.2 kW/capita. The distribution of the primary power demand and use diverges
widely between ‘rich’ consumers in industrialized countries (up to 12 kW/capita)
and extremely ‘poor’ consumers elsewhere (< 0:1 kW/capita). The average as well
as the individual numbers may be compared with the ‘biological’ value of (0.06–
0.07) W/capita for adult humans not engaging in any specific physical activity, i.e.,
only sleeping or sitting.

In view of an increase in regional industrial activities and due to the moral
requirement to provide a better energy supply to the large number of poor people,

1The exploitation of locally available types of renewable energies, such as tidal, geothermal, ocean
waves, etc., should certainly be considered. In the global balance, however, their contribution is
only marginal.
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Fig. 2.2 Global budget of renewable energy flows driven by solar insolation of the atmosphere
and the Earth’s surface. Data from [2]

one must expect an even greater increase in global primary energy demand than
would be implied by the corresponding rise in population. In the future, a straight
replacement of traditionally used fossil energy carriers by renewable energies, and in
particular solar energy, will definitely not suffice for a ‘business as usual’ strategy.
Indeed, we will need to change our appreciation of the value of energy and our
relationships with it. In this sense, we should regard the contribution of electrical
power delivered from solar cells by conversion of sunlight rather as an option than
as a panacea.

2.3 Production of Solar Cells and Modules

Regarding the production of solar cells and modules and their use for solar energy
conversion, several aspects must be taken into account, including the total energy
needed for preparation versus energy output over lifetime, availability and costs
of material and components, cost of investments, and return on investments. For
a fast-growing business area like solar cells, the availability of sufficient numbers
of personnel with the appropriate training in science, technology, and maintenance
may also act as a bottleneck for the necessary speedy development of a photovoltaic
industry.

To appreciate what industrial production would involve, we may calculate the
energy and material needed to replace the electrical power output of a nuclear
power plant with nominal 5 GW production. For this purpose, we assume single-



8 2 Global Energy Situation

crystalline silicon (c-Si) solar cells with a module efficiency �mod D 0:15, exposed
to an average central European insolation of 100 W/m2. Replacing 5 GW would then
require a total module area of Amod D 3:3 � 108 m2 (18 � 18 km2). Furthermore,
assuming a mean absorber thickness of the c-Si wafers of dc-Si D 250�m, one
arrives at a total volume of crystalline silicon2 of Vc-Si D 1:65 � 105 m3. The
energy required to produce c-Si wafers presently amounts to about 1,300 kWh/m2

[4], which corresponds to about 4:3 � 1014 Wh for a 5 GW photovoltaic plant.
At the present time, the lifetime of such c-Si modules is considered to be around

30 years (2:6 � 105 h), which translates to a production rate of V �
c-Si D 15m3/day.

This corresponds to the production of modules with an area A�
mod D 3�104 m2/day.

The power input for a daily output of 15 m3 c-Si amounts to about 1.7 MW. Here,
we understand that this type of business will no longer be run by a small factory,
but will rather resemble an industrial plant for mass production, as for tires, for
chemicals, or for cars!

Furthermore, the average production power of a 5 GW photovoltaic plant of
4:3�1014 Wh within the 30 years of its lifetime yields about 1.5 GW. Consequently
a c-Si photovoltaic power plant (under central European insolation) would pay back
its energy needed for production after 9 years. Thin film photovoltaic modules
(however, somewhat less efficient) are assumed to need substantially less energy
for production (factor 0.1–0.2) and thus their energy pay-back time amounts only to
few years or even less.
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Chapter 3
Sun as Energy Source

The Sun is a nuclear fusion reactor with a life expectance of about 4:5 � 109 years.
In its core, at a proton density of 1025 cm�3 and a temperature of 1:5 � 107 K,
protons (pC) are converted by fusion processes and via several intermediate steps
into nuclear products, such as helium (42He), amongst others [1]. The average energy
gain per nucleon in such fusion reactions amounts to several MeV. The total rate of
change of the mass deficit of the Sun amounts to Pm D 6 � 109 kg=s, corresponding
to a total power of 3:6�1026 W emitted by the outer surface of the Sun, or an energy
flux

��;Sun D ��.RSun D 6:9 � 108 m/ D 6 � 107 W=m2 :

3.1 Geometrical Configuration

The geometrical configuration of the Sun and planets in our solar system determines
the energy flows exchanged between the individual partners and also the balance
governing steady-state temperatures [2]. For our treatment here, we regard the Sun
as a thermal-equilibrium source of radiation supplied by internal nuclear fusion
processes. The planets are ‘passive’ absorbers of solar radiation, and also emitters
of radiation, thus balancing the incoming energy and providing for steady-state
conditions, such as an average temperature.

In particular, the planet Earth at mean distance dSE D 1:5� 1011 m from the Sun
receives the radiation after a strong reduction from ��.RSun/ D 6 � 107 W/m2. At
the outer boundary of the Earth’s atmosphere, this radiation represents an energy
flux ��.dSE/ D ��;Sun.RSun=dSE/

2 D 1:27 � 103 W/m2. Provided it does not suffer
from any further directional dispersion (conservation of the etendue), this flux can be
reconcentrated by passive elements like lenses or mirrors with maximum theoretical
concentration factor Cmax; th D .dSE=RSun/

2 to reestablish the original photon and

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 3.1 Geometrical
configuration of Sun and
Earth and solar photon fluxes
to Earth without (top) and
with maximum concentration
of sunlight (bottom)
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energy fluxes at RSun, which for the photon flux reads ��;0 D �� .RSun/ (see
Fig. 3.1).1

3.2 Spectral Distribution of Solar Photons

3.2.1 Thermal Equilibrium Radiation/Planck’s Law

To a good approximation, the spectral distribution of solar radiation equals that of
a thermal-equilibrium source at T D TSun � 6,000 K. Here we have neglected the
inhomogeneous temperature distribution at the Sun’s surface, along with the high-
temperature protuberances contributing to the full solar light flow with relatively
small surface areas.

To formulate the thermal-equilibrium radiation, we follow a similar approach
like that of M. Planck [3], considering as the origin of radiation the photon density
in a three-dimensional box with ideally electrically conducting walls and held at
temperature T . One novel step taken by Planck was the introduction of discrete
modes, and in particular discrete modes of electric field strength. Due to the
infinitely conducting walls of the box, the electric field strength vanishes there. Our
second input consists of the occupation of these discrete modes in accordance with
the Bose–Einstein energy distribution function.2

1The sunlight arrives at the Earth’s position under the solid angle of ˝Sun D �.RSun=dSE/
2 and—

according to the second law of thermodynamics—might be concentrated only up to the flux per
solid angle of the source, known also as conservation of the etendue.
2The total energy of thermal radiation using classical electromagnetic theory via the integralR

1

0 u!.„!; T /d.„!/ ! 1, whereas with the Bose-distribution function equivalently with
Planck’s approach, the total energy of a thermal radiator gives a finite value (see [4]).
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Fig. 3.2 Schematic
representation of stationary
modes of different wave
lengths, e.g., transverse
electric field strength, in a
box of length Lx with highly
conductive walls
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Along each of the three Cartesian axes of Planck’s box, with lengths Lx , Ly ,
Lz, the boundary conditions for the transverse electric fields of the electromagnetic
wave imply that we get standing waves with wave vectors

kx .nx/ D 2�

�nx
D 2�

2Lx
nx;

ky
�
ny
� D 2�

�ny
D 2�

2Ly
ny;

kz .nz/ D 2�

�nz

D 2�

2Lz
nz;

where nx;y;z 2 Z (see Fig. 3.2), these being related to the electric field components
En;trans;x D En;y;z sin

�
knxx

�
, En;trans;y D En;z;x sin

�
knyy

�
, and En;trans;z D

En;x;y sin
�
knzz

�
in the box.

Superposition of the three independent modes yields the solution for standing
waves with independent mode numbers nx , ny , and nz. For standing waves, the
change in sign of nx , ny , or nz to �nx , �ny , and �nz does not alter the solution. In
the three-dimensional wave vector space, the resulting wave vector for a particular

combination kx , ky , kz gives k D
q
k2x C k2y C k2z , and analogously we write n D

q
n2x C n2y C n2z for the resulting mode number. Replacing the k-values for standing

waves by ki D �ni=Li , we finally arrive at

k D
s�

�

Lx
nx

�2
C
�
�

Ly
ny

�2
C
�
�

Lz
nz

�2
:

We see from the relation ki D �ni =Li that wave vectors ki and modes ni are
equidistantly distributed along the ki and ni axes, respectively.
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Fig. 3.3 Three-dimensional
wave vector space for the
visualization of discrete
modes of the wave vector
k D

q
k2x C k2y C k2z D

const: and representation of a
section of the 4�k2 surface

The number of modes in a three-dimensional volume element is dN D
dnxdnydnz and these have to be summed up (integrated) over the isotropic space
(see Fig. 3.3) to yield

dN D 1

8
� 4� � 2n2dn (3.1)

We only count one octant of the n-space and allow for two directions of
polarization, which correspond to each of the two components of the electric
field strength oriented transversely with respect to the propagation, e.g., for the x
propagation, we consider Ey and Ez.

Since we are interested in the energy distribution of modes rather than the mode
distribution, the number of modes dN per mode interval dn has to be translated via
the wave vectors k and dk into energy „! or frequency ! by

n D L

�
kn D L

c�
!

and

dn D L

c�
d! ;

respectively, where c and! are the speed of light, e.g., in vacuum, and the frequency.
In this way, for a cubic box with Lx D Ly D Lz D L, we arrive at

dN.!/ D L3

c3�2
!2d! : (3.2)

A normalization of this number of stationary solutions with respect to volume L3

and frequency interval d! represents the three-dimensional density of states for
these energy quanta, called photons.
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The second ingredient of our approach consists of imposing the Bose–Einstein
distribution function for the occupation of the density of photon states dN.!/. This
reads

fBose D 1

exp

�„! � 	�
kT

�

� 1

; (3.3)

where „!, 	� , k, and T are the photon energy of particular modes, chemical
potential of the photon field, Boltzmann constant, and temperature. Since the
chemical potential of the photon field from a thermal equilibrium radiator at the
same temperature T as the environment vanishes (	� D 0), the photon density in
the box per volume element dn�.!/ D dN� .!/ =L

3 is expressed by

dn�.!/ D 1

c3�2
!2

exp

�„!
kT

�

� 1

d! ; (3.4)

whence the energy density is

du�.!/ D „! dn� D „!
c3�2

!2

exp

�„!
kT

�

� 1
d!

D 1

c3�2„3
.„!/3

exp

�„!
kT

�

� 1
d.„!/ : (3.5)

Figure 3.4 shows the spectral photon densities and spectral energy densities of
thermal equilibrium Planck boxes for different temperatures.

The conversion of photon energies into wavelengths is obtained with the help of
! D 2�c=� and d! D �.2�c=�2/d� for the energy density du�.�/, we obtain the
relation

du�.�/ D 16�2„c
�5

1

exp

�
2�„c
�kT

�

� 1
.�d�/ : (3.6)

Figure 3.5 shows the energy density versus wavelength du�.�/ for different temper-
atures. The shift of the maximum to lower � with rising temperature T is known as
Wien’s law:

�.u� D max/ D �� � 2�„c
5kT

:
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Fig. 3.4 Relative spectral photon densities (left) and relative spectral energy densities (right) in a
thermal equilibrium Planck box for different temperatures (275K � T � 6,000 K) in log-linear-
plots (top) and in linear-linear-plots (bottom)
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Fig. 3.5 Energy density versus wavelength in a thermal equilibrium Planck box for different
temperatures (275K � T � 6,000 K)

Another approach based on transition rates of electrons between particular levels
within energetic regimes with corresponding densities of state D1 D D.�1/ and
D2 D D.�2/ [5] leads to the same relation for the spectral behavior of photon
versus photon energy „!. The resulting number of energy modes per frequency



3.2 Spectral Distribution of Solar Photons 15

interval derived from the photon modes reads equivalently:

du� D A21

B

1

exp

�„!
kT

�

� 1
d! ; (3.7)

which, apart from the prefactor A21=B , whose components originate from the
coefficients for transitions between particular upper (2) and lower energy levels (1)
[5, 6] for stimulated (B12 D B21 D B) as well as for spontaneous ones (emission)
(2 ! 1) with A21 [5] equal the frequency dependence in the Planck approach. The
prefactor A21=B commonly is derived from the Rayleigh–Jeans law

du�; RJ.!/ D 2!2

�c3
kT d! (3.8)

by equating du� for u�;RJ.! ! 0/:

du�.! ! 0/ D A21

B

1

1C „!
kT

C 1

2Š

�„!
kT

�2
C � � � � 1

d!

�
�
A21

B

��
1

„!=kT

�

d!; (3.9)

which finally yields

A21

B
D 2„!3

�c3
D 2 .„!/3

�c3„2 (3.10)

and

du� D 2

�2c3„3
.„!/3

exp

�„!
kT

�

� 1
d .„!/ : (3.11)

3.2.2 Emission from a Black Body

The emission of radiation from a source like a black body in thermal equilibrium in
which the photons are propagating with homogeneous distribution in the 4� solid
angle, can be realized as escape through an aperture with infinitesimally small area
dA (see Fig. 3.6). The entire amount of photons leaving the box per time J� (flow
of photons to be derived from the spectral particle flux d�� ) is assumed to be so
small that it will not affect the photon reservoir. It is also assumed that the photon
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Fig. 3.6 Photon flux d��
through area element dA into
solid angle d˝ inclined at
angle � from normal
incidence nnormal

nnormal

dA

dΩ
dΓγ

θ

flux from the box reflects the spectral composition dn�.!/ of photon modes in the
box, which is governed by the temperature (and formally depends on the number of
dimensions of the box). Accordingly the emitting aperture is an ideal representation
of a black body.

The spectral energy flow dJ� through an area element dA propagating at angle�
with respect to the normal nnormal into the solid angle element d˝ with the speed of
light in vacuum c0 is given by

dJ� D du�c0
d˝

4�
cos� dA : (3.12)

The integration of du�.!/ over the entire spectral range with upper and lower limits
! D 0 and ! ! 1, respectively, yields the energy density u� D R1

0 du�.
The total energy flow J� through the aperture dA thus corresponds to the integral

J� D u�c0
dA

4�

Z �=2

0

cos� sin� d�

D u�
c0

4�
dA
1

2
sin2.�=2/ D u�

1

4
c0dA ; (3.13)

and finally this flow J� through the aperture dA is given by

J� D dA
1

4�2„3c20

Z 1

0

.„!/3
exp.„!=kT/ � 1d.„!/ : (3.14)

The upper equation involves a definite integral of type

Z

n

1

exp.a
/ � 1
d
 ;

which is analytically solvable (in fact, a Gamma function) and which leads to

J�

dA
D �� D �2

4c20

k4

„3
1

15
T 4 D �SBT

4 ; (3.15)
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where �SB is the Stefan–Boltzmann constant,3 with value

�SB D 5:667 � 10�8 W K�4 m�2 :

3.3 Radiative Balance Between Sun and Earth

With Planck’s law we calculate the total energy flow from the Sun, which illuminates
the Earth, and which, assuming steady state, itself emits the very same amount of
energy it receives from the source into the surrounding environment. Here, for the
radiative balance, we forget about the amount of solar radiation converted into fossil
energy, accumulated ago over millions of years and also neglect the contribution of
fossil components today released and transformed to oxidized species such as CO2

or H2O. We also simplify absorption and subsequent emission of solar radiation by
our globe by assuming that Sun and Earth are ideal Planck radiators and absorbers,
each exhibiting both absorptivity ˛ and emissivity " equal to unity irrespective of
the energy of the photons, whereupon ˛.!/ D ".!/ D 1. The energy flow balance
is thus

"Sun�SBT
4

Sun˝0˛Earth�R
2
Earth C "Univ�SBT

4
Univ˛Earth.4� �˝sun/R

2
Earth

D "Earth�SBT
4

Earth4�R
2
Earth : (3.16)

The contribution of the Universe consists of the 3 K-background radiation and the
light of the stars and the Moon, which reaches the Earth in the solid angle (4� �
˝Sun) with ˝0 D .RSun=dSE/

2, where ˝Sun denotes the solid angle under which
the Sun appears when observed from the Earth, and ˝0 may also be regarded as a
simple abbreviation for the reduction of the energy flux from ��.RSun/ to ��.dSE/

3The above deduction of Planck’s law for the spectral behavior of thermal equilibrium radiation is
based on the density of states of photons, in other words, on the density of three-dimensional modes
for stationary solutions of a wave equation resulting in 3D standing waves. Mode numbers and
individual wave vectors translate linearly into frequencies and energies of particular photons, and
the multiplication of the density of states by the particular photon energy yields the corresponding

spectral energy flux. So apart from the Bose term
�

exp.„!=kT/ � 1
�

�1
, the integrand contains

the independent variable ! to a power n equal to the number of dimensions, i.e., .„!/n .
Consequently, the analytically representable solution of the definite integral also contains the
number of dimensions, i.e., in the dependence of the total energy flux on temperature � T .nC1/.
Accordingly, �SB also depends on the number of dimensions [7], and in general reads

�SB D 2�.n�1/=2
�.nC1/&.nC1/

�.nC1/=2

knC1

.2�„/ncn�1
;

where � and & are the Gamma and Riemann zeta functions, respectively.
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(see footnote4). We solve the above equation with the approximation ˝Sun � 4�

and obtain for the steady-state Earth temperature

TEarth � 4

r
1

4
˝0T

4
Sun C T 4Univ : (3.17)

Due to the low value of the temperature of the background radiation, which enters
through a fourth power, and because of the negligible contribution of moonlight and
of the input from stars, the above balance implies that the approximate temperature
of our globe is

TEarth � 4

r
1

4
˝0T

4
Sun D 288 K : (3.18)

In this approximation, each of our crude assumptions, such as the constant and
ideal absorptivities and emissivities not taking into account the differing values
of reflection and absorption of water, land, and ice areas or clouds, lead by lucky
coincidence to errors that compensate one another, and we get a reasonable number
for the Earth temperature of about 300 K. To conclude, in general terms, we
have to describe a system of two temperature reservoirs, namely, a heat source at
TSun D 6,000 K and a heat sink at TEarth D 300K with the transfer of these heats by
electromagnetic waves, and unquestionably apply thermodynamic relations to find
the behaviour of such configurations.

If we depart from a purely radiative balance in the configuration of one
hypothetical hot source (a type of Sun with asterixed properties T �

Sun, etc.) and
a single Earth-like absorber/receiver (properties indicated by subscript rec) by
allowing for a portion of solar radiation to be converted by some procedure of
the absorber into chemical energy PU of components transferred to some kind of
storage (see Fig. 3.7 and think of photosynthesis, photobiology, photochemistry, or
photovoltaics attached to a battery), the energy flow balance modifies to

"Sun�SB
�
T �

Sun

�4
˝0˛rec�R

2
rec C "Univ�SBT

4
Univ˛rec.4� �˝Sun/R

2
rec

D "rec�SBT
4

rec4�R
2
rec C PU : (3.19)

Furthermore we assume once again unit absorptivity and emissivity of source,
Universe, and receiver, i.e., "Sun D "rec D "Univ D ˛rec D 1, ˝Sun � 4� , and

4The entire flow collected by an ideally absorbing sphere at distance from the Sun dSE is related to
the perpendicular projection of the sphere (cross section) and amounts to ��.dSE/�R

2
sphere whereas

for emission the sphere offers the total surface area of 4�R2sphere. Here the maximum solar light

concentration would correspond to the illumination of the entire surface of the sphere (4�R2sphere)
and vanishing access of the light from the universe.



3.3 Radiative Balance Between Sun and Earth 19

Fig. 3.7 Energy flow balance
of Sun and receiver without
(top) and with conversion of
solar energy into chemical
energy and subsequent
storage (bottom)

write the modified steady-state temperature of the receiver, as

Trec � 4

s
1

4
˝0

�
T �

Sun

�4 C T 4Univ �
PU

R2rec�SB4�
: (3.20)

We recognize that the receiver temperature Trec decreases when converting a part
of the incoming solar energy flow into chemical energy that is put into a reservoir.
Equivalently, the receiver temperature rises when energy is released from storage
and at least partially converted into heat, an effect which is currently initiated by
human beings when using fossil fuels. In essence, the temperature of a receiver
depends on what the receiver is doing with the absorbed light.

Assuming further that the performance of the above conversion process depends
on the receiver temperature as in a Carnot cycle or similar, the efficiency commonly
rises for decreasing Trec, whereupon the part for storage increases as well and Trec

decreases even further.
For the use of a Carnot engine to convert a fraction ˇ of the incoming solar

energy into chemical energy, the balance of the energy flow of the hypothetic spheric
receiver transforms to

"Sun�SB
�
T �

Sun

�4
˝0˛rec�R

2
rec

D "rec�SBT
4

rec4�R
2
rec C ˇ"Sun�SB

�
T �

Sun

�4
˝0˛recR

2
rec

�

1 � Trec

T �
Sun

�

: (3.21)

After a simple rearrangement and including solar light concentration with factor
C , we get the following equation for the receiver temperature Trec:

T 4rec � ˇ
C˝0

4�
Trec

�
T �

Sun

�3 � .1 � ˇ/
C˝0

4�

�
T �

Sun

�4 D 0 : (3.22)
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Fig. 3.8 Temperature Trec of a solar-energy receiver (at distance dSE from the Sun) as a function
of the fraction ˇ of conversion of the incoming light into chemical energy (ˇ � �C) for different
solar light concentration factors C between AM0 and maximum (1 � C � Cmax D 4.˝0/

�1;
˝0 D .RSun=dSE/

2) (left), and receiver temperature versus sunlight concentration for conversion
with Carnot efficiency (� D �C) (right); for both figures the contribution of the Universe has been
neglected

The numerical solution for Trec D Trec.˝0; ˇ; C / is presented in Fig. 3.8, where the
receiver temperature is presented for different light concentration factors C .

Note that any storage of solar radiation or its equivalent release in other bodies
(stars, planets, etc.) in our Universe will in principle influence the temperature of any
receiver/absorber system in the Galaxy. Although this effect is numerically of little
importance, we recognize the coupling of all components of our Universe through
exchange of radiation.

3.4 Particular Aspects of Solar Radiation Arriving
at the Earth

3.4.1 Solar Energy Flux

At the distance dSE D 1:5 � 1011 m from the Sun’s surface, which corresponds
to the average radius of the Earth orbit around the Sun, the energy flux emitted
from the surface of the Sun at temperature TSun D 6,000 K is reduced while
propagating radially in a homogeneous way in the three-dimensional space and thus
is attenuated by the factor .RSun=dSE/

2 before it enters the Earth‘s atmosphere.5

The energy flux at the outer atmosphere ��.dSE/ D 1:26 � 103 W m�2 before it
arrives at the Earth’s surface is additionally affected by light-matter interaction in the

5The flux from the Sun ��.dSE/ is defined as solar light flux at Air Mass Zero (AM0) since it is
not affected by interactions with the Earth atmosphere; corresponding modifications of the spectral
distribution of �� , as well as its magnitude by the atmosphere are designed by AM1, AM2 etc. Here
�� suffers from absorption, scattering, and reflection by particles of different kinds, like molecules,
water clusters, dust, and so on, qualitatively represented by the path length of the light through the
atmosphere.
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atmosphere (absorption and scattering) and thus it is further reduced; of course the
solar flux might be additionally influenced by light concentrating elements (mirrors,
lenses) what formally reads in modifying the solid angle ˝0 D .RSun=dSE/

2 by a
concentration factor C .

3.4.2 Photon Flux at the Position of the Earth

In order to get the photon flux ��.dSE/ (number of incident photons per unit area
and unit time) at the outer atmosphere of the Earth, we integrate the spectral flux at
the Sun’s surface and reduce this number by the factor˝0 D .RSun=dSE/

2, whence

��.dSE/ D 1

4�2

�
RSun

dSE

�2 Z 1

0

�
1

c20„3
��

1

„!
�

.„!/2
exp.„!=kTSun/� 1

d.„!/ ;

(3.23)

and finally,

��.dSE/ D 1

4�2

�
RSun

dSE

�2 �
1

c20„3
�
�
2k3T 3Sun�Œ3�

�

D 7:05 � 1017 cm�2 s�1 : (3.24)

3.4.3 Optical Concentration of Solar Light

As it propagates from its spherical origin in three dimensions, the solar energy flux is
reduced by a factor equal to the square of its distance from the Sun,6 so that we have
��.d/ D ��.RSun/ .RSun=d/

2. This reduction might be reversed—in a gedanken
experiment—by passive optical elements, assumed to exhibit ideal properties, like
mirrors (with reflection factor of unity and zero temperature) or lenses with ideal
transmission and no reflection). For the concentration of sunlight7 we distinguish
two options.

The first one, usually applied for the determination of the theoretical limit of
solar light conversion, where the solar light receiver/absorber is illuminated under a

6We have to recognize that the solar light even at the large distance from the sun dSE D 1:5�1011 m
might not be treated as a plane wave and accordingly concentration is limited by conservation of
the photon flux per solid angle (etendue).
7Instead of balancing the light flows like that of the solar light with its respective concentration
reaching the absorber and the light flow emitted by the absorber commonly solid angles, ˝in

for the entrance and ˝out for the exit are used, which implicitly contain the factor of sunlight
concentration.
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Fig. 3.9 Representation of
photon exchange by beam
optics of source S and
receiver R for maximum light
concentration with an ideal
ellipsoidal mirror

Sun

receiver
RrecRSun

solid angle ˝in ranging from˝0 � ˝in � ˝out D 4� which means the receiver for
emission sees the entire solid angle in the three-dimensional space.

A schematic representation of this approach with maximum concentration
consists of an ideal mirror of shape of a rotational ellipsoid (see Fig. 3.9). The
source (the Sun) is located at one of the focal points, while the receiver is located
at the second focal point. Thus every photon of the source emitting isotropically
into the 4� solid angle is reflected towards the receiver and arrives there.8 For
identical radii of source and receiver (RSun D Rrec) arguments regarding the
reversibility of optical paths show that the originally emitted light flux from the
source surface will be exactly equal to that incident on the receiver surface, leading
to a concentration factor C D Cmax D .dSE=RSun/

2. This maximum is in agreement
with thermodynamic arguments: a higher flux density at the receiver by Rrec <

RSun—in the flow of photons and of the energy balance of the receiver, which in
steady state requires input equals output—would be accompanied by a receiver
temperature higher than that of the source, in contradiction to the second law of
thermodynamics!

In the picture provided by ray optics, a receiver radius Rrec < RSun implies a
smaller receiver area to get a higher local energy flux ��.R < Rrec/ > ��.RSun/.
But wave optics does not agree! It should be remembered that ray or beam optics is
an approximation that can only be applied if interference effects and superposition
of wave amplitudes can be neglected. And since any of the spherical sources of the
radiating system (the Sun) emit waves that only interfere constructively at the same
radius of the receiver as the source radius, for smaller receiver radii, the image of the
Sun is not exactly focused on the receiver. This means that the squared amplitudes
of the photon field in the vicinity of the receiver, and in particular at Rrec < RSun,
do not exceed those at RSun.

A similar conflict seems to emerge when concentrating solar light with an ‘ideal’
lens system (see Fig. 3.10). Here, even for a lens diameter approaching infinity,
one only would collect photons from the solid angle 2� and transfers them to the
receiver solid angle, again equal to 2� (optical imaging with curved planes). Of
course, the object (the Sun) can be projected onto a smaller image, but this will

8This approach is valid provided the spatial extension of source and receiver are small compared
to their distance.
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Fig. 3.10 Schematic photon
exchange between source
(Sun) and receiver for light
concentration with an ideal
lens

definitely not increase the flux of photons or of energy of the image beyond that of
the source.

The second option for the balance of photon flows in and out of an absorber with
consideration of sunlight concentration accounts for the particular configuration
of flat absorbers, such as solar thermal or photovoltaic panels. For the projection
of photons from a spherical source onto a plane9 the solid angle of the input
light ranges from ˝in D ˝0 (no concentration) up to ˝in;max D � (maximum
concentration), whereas the ‘effective’ solid angle for the absorber’s emission into
the half hemisphere amounts to ˝out D � . The value ˝in;max can be easily derived
from the balance of the entire photon flow through the aperture of an optical
concentrator, e.g., an ideally assumed lens. For maximum sunlight concentration
(see Fig. 3.11) the photons from the Sun, J�;Sun, emitted by the area dAS arrive at the
receiver area dAr (J�;Sun D J�;r) with the identical flux ��;r D J�;r=dAr like that at
the emitting Sun surface ��;Sun D J�;Sun=dAS.10 The respective flows from the sun
and to the receiver read

J�;Sun D ��;Sun

Z �Sun

�SD0
2� cos �S sin �Sd�SdAS (3.25)

and

J�;r D ��;r

Z �r

�rD0
2� cos �S sin �rd�rdAr: (3.26)

9This configuration is commonly realized with solar thermal absorbers and with photovoltaic cells
and modules, which both are exposed only by one side to the solar insolation on comparatively
small areas for which the photons are assumed to propagate parallel and of which the area for light
reception equals that for light emission.
10The upper limit is again given by thermodynamics, whereas we should not trust ray optics which
erroneously would allow for even higher light fluxes of the image than that of the source.
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Fig. 3.11 Solar photons fed
to a flat receiver with
concentration of light from
the Sun (source) by an ideal
lens

θr

ideal lens

receiversource
θs

ΩrΩs

The upper limit of the angle � D �Sun D ˝Sun D �˝0 represents the solid
angle under which a terrestrial observer sees the Sun. Of course, due to the optical
configuration dAS ¤ dAr. We replace

Z b

a
cos � sin �d� D

Z b

a
sin �d sin � D �

.1=2/.sin �/2
�b

a

and demand the identity of the fluxes ��;Sun D ��;r which means the optical image
of the Sun at the receiver appears as bright as the Sun’s surface (maximum sunlight
concentration). Finally we get

Cmax D �

˝Sun
.sin�Sun;max/

2 D �

˝Sun
.sin�r;max/

2;

with .sin�r;max/
2 D 1, or �r;max D .�=2/ equivalently.11

3.4.4 Average Energy of Solar Photons

The mean energy of solar photons emitted from the surface of the Sun is related to
its surface temperature TSun � 6,000 K, which corresponds to

kTSun D 1:38 � 10�23 Joule=K � 6,000 K D 8:28 � 10�20 Joule D 0:52 eV :

11In real systems the angle �r;max D .�=2/ for the collection of photons arriving from the entire
hemisphere to which the receiver is exposed to can hardly be realized.
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During propagation of these photons in vacuum to the Earth we do not consider
any change in spectral distribution, since interaction with matter is excluded and
photon–photon interactions in the photon energy range considered do not occur,12

so the average photon energy �phot is derived as the total solar energy flux divided
by the total photon flux:

N�phot D

Z 1

0

1

c204�
2„3

.„!/3
exp.„!=kTSun/ � 1d .„!/

Z 1

0

1

c204�
2„3

.„!/2
exp.„!=kTSun/ � 1d .„!/

� 1:405 eV: (3.27)

3.4.5 Fraction of Solar Photons Above a Specific Optical
Threshold Energy

For the absorption by matter with a specific optical threshold energy �g above which
photon-matter interactions are allowed, we are interested in the fraction of solar
photons being absorbed and plot the corresponding ratio of photon fluxes:



�
�g
� D

Z 1

�g

1

c204�
2„3

.„!/2
exp.„!=kTSun/� 1

d .„!/
Z 1

0

1

c204�
2„3

.„!/2
exp.„!=kTSun/� 1

d.„!/
(3.28)

Figure 3.12 shows the fraction of solar photons with energies „! larger than the
optical threshold energy �g for absorption (e.g., the band gap of a semiconductor).

3.4.6 Momentum Transfer of Solar Photons to Absorbers

In the course of the interaction of photons with matter by absorption or emission,
momentum and spins are also conserved. Accordingly, absorption and reflection
of photons induces a transfer of momenta from the photons to the absorbing
or reflecting media. (Here, due to the small contribution, we may neglect the
conservation of spins.) We accumulate the individual momenta of each of the solar
photons, which means integrating the transfer of photon momenta („!=c0) to an
ideally absorbing medium (threshold energy �g) per unit area and time interval to

12Here we neglect the influence of the spectral shift of solar photons when leaving the gravitational
field of the Sun or entering that of the Earth. The curious reader may be inspired to estimate the
influence of the gravitational fields of the Sun and the Earth.
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Fig. 3.12 Fraction of solar photons versus optical threshold energy for absorption (optical band
gap of a semiconductor) in linear (left) and logarithmic representation (right)

get the ‘pressure’ pSun; abs.d/ that solar photons produce at distance d from the Sun:

pSun; abs.d/ D
�
RSun

d

�2 Z 1

�g

.h!/2

c204�
2„3

�„!
c0

��
1

exp.„!=kTSun/� 1

�

d.„!/ ;
(3.29)

and with exemplarily chosen �g D 0, with the definite integral of the form

Z 1

0

�n
1

exp.�=a/� 1
d�

and the appropriate Gamma function, we obtain

pSun; abs.d/ D
�
RSun

d

�2
1

c30

6

90
�4
.kTSun/

4

„3 .2�/2 : (3.30)

Setting d D dSE and TSun D 6,000 K, gives

pSun; abs D 5:3 � 10�12 VAs cm�3 D 5:3 � 10�10 N cm�2 : (3.31)

For ideally reflecting matter, the momentum transfer doubles and the solar photon
pressure becomes

pSun; refl D 2pSun; abs D 1:06 � 10�9 N cm�2 : (3.32)

Moreover, the emission of photons from an absorber, e.g., such of thermal radiation,
of course, also effects a momentum, that pushes the emitting body in the opposite
direction of the photons.
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3.4.7 How an Earth-Based Observer Sees the Sun

For an Earth-based observer, the Sun covers a solid angle

˝Sun D � .RSun/
2 1

.dSE/
2

D 6:7 � 10�5 :

An arbitrarily selected area element dAS D d
 ds of the Sun’s surface (see Fig. 3.13)
emits a photon flow dJ�;˝ D ��d
dsd˝ towards a terrestrial observer. Writing
ds D RSund� , we obtain the emission dJ�;˝ in the direction of the Earth, say in the
direction of the radius vector from the center, whereupon the flux is modified by a
term in the cosine of the angle � :

dJ�;˝ D ��d˝ d
 cos � ds : (3.33)

Introducing � D RSun sin � and d�=d� D RSun cos � , which converts into

d� D 1

RSun

1

cos �
d� ;

we arrive at

dJ�;˝ � RSund˝d
 cos � d�

D RSund˝
1

RSun
cos �

1

cos �
d
d� � d
 d� ; (3.34)

which shows that the emission of an area element towards the Earth does not depend
on its position � and � .

In a similar approach we may equivalently regard a circular area element dAS of
the disc-shaped configuration with radius � and width ds :

dAS D 2��ds D 2�RSun sin � ds : (3.35)

Fig. 3.13 Emission from a
spherical source like the Sun
towards a terrestrial observer

dAS RSun sin(θ) d θ

terrestrial observer

θ dθ

dJγ,Ω

dξ ds

RSun

ρ

Sun
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Introducing ds D RSund� , one arrives at

dAS D 2��ds D 2�R2Sun sin � d� : (3.36)

The emitted entire flow dJ �
�;S from this circular area element dAS, into the solid

angle d˝ yields

dJ �
�;S D ��dAS cos � d˝ (3.37)

and

dJ�;S D ��2�R
2
Sund˝ sin � cos � d� : (3.38)

Then observing that cos � d� D d.sin �/, we get by integration

J�;˝ D
Z �=2

0

��2�R
2
Sund˝ sin � d.sin �/

D
�

��2�R
2
Sund˝

1

2
.sin �/2

	�=2

0

D ���R
2
Sund˝ ; (3.39)

which is identical to the emission of a homogeneously emitting circular disc
recorded perpendicularly.

3.4.8 Entropy Flux of Solar Radiation

The energy flux �� of the Sun is related to the fourth power of the surface
temperature, viz., �� D �SB"SunT

4
Sun. By thermodynamic arguments, this energy

flux is accompanied by a corresponding entropy flux �S;Sun.TSun/, which reduces
the free energy of the photons and thus dependent on the temperature of the
absorber may also drop the efficiency of their conversion [8]. To determine the
corresponding entropy flux the relevant fundamental relation of thermodynamics
are applied, i.e., the first law, which relates the change in internal energy dU with
the heat •Q D T dS fed into the system, the work extracted from the system (e.g.,
mechanical work, formulated in terms of pressure and volume change) •W D pdV ,
and the species dNi (here, the photons) with appropriate chemical potential 	i , also
fed into the system:

dU D T dS � pdV C
X

	idNi : (3.40)
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Since the internal energy U D U.S; V;Ni/ also reads

dU D
�
@U

@S

�

V;Ni

dS C
�
@U

@V

�

S;Ni

dV C
X�

@U

@Ni

�

S;V

dNi ; (3.41)

we deduce the identities
�
@U

@S

�

V;Ni

D T ;

�
@U

@V

�

S;Ni

D �p ;
�
@U

@Ni

�

S;V

D 	i :

We imagine a package of photons with energy dU in a hypothetical volume,
travelling with the speed of light in vacuum in a certain direction. Due to the absence
of photon–photon interactions, there is no change in spectral distribution, and in fact
dNi D 0. For large distances from the Sun’s surface, d 	 RSun, we also assume
the photon flux to be a plane wave, and due to the absence of spatial dispersion (the
speed in vacuum is identical for every photon energy/wavelength), no change will
thus occur in the hypothetical volume. We assume the component to proceed with
the partial derivative

�
@U

@S

�

V;Ni

D T ;

then substitute in
�
@U

@S

�

V;Ni

D
�
@U

@T

�

V;Ni

�
@T

@S

�

V;Ni

D T ;

and introduce U D �SB"T
4 to obtain

�SB"4T
3

�
@T

@S

�

V;Ni

D T ; (3.42)

or

�SB"4T
2dT D dS : (3.43)

Note that the transition from the internal energy U and the entropy S in a non-
moving system to fluxes �� and �S , such as those attributed to photons propagating
with the speed of light, neglects—eventually erroneously—the influence of photon
wave vectors for the entire balance of energy and momentum [9].

The last equation solves by integration for the entropy S travelling with the
speed of light, as well as a byproduct of the energy flux �� emitted from a thermal
equilibrium source at temperature T :

�S D �SB"
4

3
T 3 C �S;0; (3.44)
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with vanishing integration constant since

�S;0 D �S.T ! 0// D 0: (3.45)

As a further consequence, the measure of the convertible part of the internal
energyU is given by the flux of free energy �F , once again traveling with the speed
of light, which reads

�F D �� � T�S :

For small distances from a spherical light source RSun � d � dSE, the
photon flux into a constant solid angle remarkably decreases, and conversely the
hypothetical volume enveloping the photon package rises by a factor of .d=RSun/

2,
which in turn for an ideal quantum gas, further increases the entropy flux due to the
rise in the number of accessible micro states. This gives another contribution to the
reduction of the free energy of solar photons.

3.4.9 Chemical Potential of Light

The chemical potential of light (	� ) defines the “quality” of radiation of a light
source referenced to a thermal-equilibrium environment with appropriate thermal-
equilibrium radiation. Moreover this magnitude	� allows for the formulation of the
work that these photons are able to initiate in the ideal case when interacting with
matter [10]. By receiving the energy of photons of this type of radiation, electrons
and phonons (lattice vibrations) are transferred to a non-thermal equilibrium state,
from which they return after a particular time period to their respective ground state
either by emitting photons and/or creating phonons which lead to heating of the
matter. Here, we are only interested in the light-induced excitation of electrons
since the direct excitation of phonons by light (optical modes) is related to photon
energies of few tens of meV which are in the neighborhood of kTEarth and thus
far below the level worthwhile for photovoltaics, photochemical, or photobiological
processes. Under stationary exposure to that light source the excited electrons in the
receiver are departed from thermal equilibrium and their excited state may be used
for producing work in terms of electrical energy.

Of course, the chemical potential of radiation of a thermal-equilibrium source
at Trad is zero for a receiver at the very same temperature Trec D Trad, exactly like
the efficiency of a Carnot engine operated between heat reservoirs with identical
temperatures. For this particular case of a thermal-equilibrium photon ensemble in
a box, the fundamental relation of thermodynamics, i.e., the first law, reads dU D
T dS � pdV C P

	idNi D 0 in the steady state, with T , S , p, V , 	i , and Ni
designating temperature, entropy, pressure, volume, chemical potential of a specific
component, and number for that component, respectively. The magnitudes to be
‘exchanged’ for dU D 0 are entropy (which provides for thermal equilibrium and
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governs temperature), volume (which allows for pressure), and particle exchange
(which enables chemical equilibrium). Due to photon absorption and emission at
the ‘black’ walls of the radiator, dNi ¤ 0. In order to satisfy

P
	idNi D 0, one

must therefore have 	i D 0.
For general determination of the properties of a particular photoexcited state,

each of the rates of change of the relevant quantities has to be formulated, which
means knowing each of the rates of occupation of specific energy levels as a function
of all the relevant levels. This ansatz leads to a system of coupled differential
equations that turns out to be extremely complicated and can generally only be
solved numerically.

However, a simple approach exists when light source and matter are in the steady
state and the matter exhibits electronic levels or bands whose occupation is no
longer in thermal equilibrium but substantially perturbed by the influence of the light
source with the particular behavior of the species in the excited states to establish
comparably fast a maximum entropy distribution (say, a temperature distribution)
due to fast intraband relaxation (see Sect. 4.2.2).

The exemplary electronic band system consists of two energetic regimes of
a semiconductor with valence (VB) and conduction band (CB) separated by an
energy gap .�C � �V/ D �g and corresponding densities of state DVB.�/, DCB.�/.
Analogously we could also think of a molecular system with comparatively larger
separation of individual energy levels and a separation between highest occupied
(HOMO) and lowest unoccupied molecular level (LUMO) called �LUMO � �HOMO

that equivalently to the band gap �g acts as a threshold energy for absorption and
emission of photons in the absorber.

Our system, here the semiconductor (see Fig. 3.14), is kept at a particular
temperature T by a strong coupling to a heat reservoir. We assume furthermore that
it is exposed to photons generating the internal photon density n� , which initiates
transitions from VB to CB by absorption. The corresponding “back reaction” of
the system is assumed to consist ideally only of radiative transitions from CB to
VB which are spontaneous and stimulated emission of photons resulting again in
a photon flow caused by the photon density n� .13 For steady-state conditions, the
occupation of the levels DVB.�/ of VB and DCB.�/ of CB is stationary and the
entire transition rates balance out accordingly:

rabs D rem; spont C rem; stim : (3.46)

These rates of the transitions depend amongst optical matrix elements (MCV,
MVC) and photon density on the occupation of initial and final states, which we

13Although the photon density absorbed and providing for the excitation of the electron system
(flow in) with respect to spectral distribution and entire density might differ from the spectral
photon density emitted (flow out) the emission is determined by the excitation state regardless by
which spectral distribution this has been achieved as far as the balance of the rates is met. From
this point of view we are allowed to also assume the photon density for absorption to equal that of
emission.
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Fig. 3.14 Electronic band
system with conduction (CB)
and valence band (VB) and
transitions representing
absorption, spontaneous and
stimulated emission of
photons; the respective
density of states in CB and
VB are DCB.�/ and DVB.�/

x
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compose of the respective density of states D.�/ and distribution functions, e.g.,
for electrons f .�/. Furthermore due to the optical transitions with negligible wave
vector changes the initial and final states are energetically separated by the energy
„! of absorbed or emitted photons,14 �2 D �1 C „!. We introduce the density of
states occupied and unoccupied by electrons in the valence band by the distribution
function f .�/ and .1 � f .�// and equivalently in the conduction band as well by
f .�C „!/ and .1� f .�C „!// and accordingly we may write the transition rates:

rabs D n�

Z 1

0

DVB.�/f .�/DCB.�/.1 � f .� C „!//MVC.�;„!/d� (3.47)

rem;spont D D�

Z 1

0

DCB.�/f .� C „!/DVB.�/.1 � f .�//MCV.�;„!/d�;
(3.48)

and

rem;stim D n�

Z 1

0

DCB.�/f .� C „!/DVB.�/.1 � f .�//MCV.�;„!/d�; (3.49)

where D� designates the photon density of states (D� D .n2.„!/2/=.�2„3c3//,
with refractive index n, photon energy „!, and speed of light c.

The assumption that the system is kept at a specific temperature T implies that
the electron behavior is to be described by Fermi statistics,15 which here means

14These two states in CB and VB are arbitrarily chosen; in thermal equilibrium—and analogously
assumed under excitation—the individual rates for transitions of absorption and spontaneous and
stimulated emission, regardless their respective photon energy, also compensate each other.
15Due to strong electron-electron interaction and because of efficient electron-phonon coupling
within energy bands the electrons after excitation by light undergo a very fast relaxation (.10�13–
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the density of excited states of electrons in the conduction band and of unoccupied
states in the valence band (called holes) can be formulated by quasi-Fermi energies
�Fn and �Fp respectively:

f .� C „!/ D 1

exp.
� C „! � �Fn

kT
/C 1

; (3.50)

.1 � f .�// D 1

exp.
�� C �Fp

kT
/C 1

: (3.51)

The functions .1 � f .� C „!// and f .�/ are derived by conservation of states
and accordingly we get:

.1 � f .� C „!// D 1 � 1

exp.
� C „! � �Fn

kT
/C 1

D
exp.

� C „! � �Fn

kT
/

exp.
� C „! � �Fn

kT
/C 1

; (3.52)

and

f .�/ D 1 � 1

exp.
�� C �Fp

kT
/C 1

D
exp.

�� C �Fp

kT
/

exp.
�� C �Fp

kT
/C 1

: (3.53)

The explicit rate equations above can be converted with respect to the photon
density n� and read

n� D D�

R1
0
DCB.�/DVB.�/MCV.�;„!/ Œf .� C „!/.1 � f .�//� d�

�

D �

�
(3.54)

10�12/ s) and occupy a distribution of maximum entropy which allows for the introduction of the
magnitude temperature.
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with the abbreviation for the denominator

� D
Z 1

0

DVB.�/f .�/DCB.�/.1 � f .� C „!//MVC.�;„!/d�

�
Z 1

0

DCB.�/f .� C „!/DVB.�/.1 � f .�//MCV.�;„!/d�

D
Z 1

0

DVB.�/DCB.�/MCV.�;„!/

� Œf .�/.1 � f .� C „!//� f .� C „!/.1 � f .�//� d�

D
Z 1

0

DVB.�/DCB.�/MCV.�;„!/ .f .� C „!/.1 � f .�///

�
�
f .�/.1 � f .� C „!//
f .� C „!/.1 � f .�// � 1

	

d�: (3.55)

Except for the term in rectangular brackets in the denominator, numerator� and
denominator� are identical, and a closer inspection of the bracket term yields

f .�/.1 � f .� C „!/
f .� C „!/.1 � f .�/ � 1

D

0

B
@

exp.
�� C �Fp

kT
/

exp.
�� C �Fp

kT
/C 1

1

C
A

0

B
@

exp.
� C „! � �Fn

kT
/

exp.
� C „! � �Fn

kT
/C1

1

C
A

0

B
@ 1

exp.
� C „! � �Fn

kT
/C1

1

C
A

0

B
@ 1

exp.
�� C �Fp

kT
/C1

1

C
A

� 1

D exp

��� C �Fp C � C „! � �Fn

kT

�

� 1

D
�„! � .�Fn � �Fp/

kT

�

� 1/; (3.56)

and we recognize this term to be independent of the variable �, so we can
substantially simplify the integral expression for n�

n� D D�

R
1

0 DCB.�/DVB.�/MCV.�;„!/ Œf .� C „!/.1� f .�//� d�

R
1

0 DCB.�/DVB.�/MCV.�;„!/ Œf .� C „!/.1� f .�//�

�

exp

�
„!�.�Fn��Fp/

kT

�

� 1

�

d�

;

(3.57)
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and finally arrive at the photon density of the photoexcited semiconductor system in
terms of the chemical potential .�Fn � �Fp/

n� D D�

1
�

exp

�
„!�.�Fn��Fp/

kT

�

� 1

� : (3.58)

For steady state the electron system (fermions) and the photons (bosons) coupled by
the rate equations for absorption and emission are in chemical equilibrium and thus
their respective chemical potentials are equal

.�Fn � �Fp/ D 	np D 	�: (3.59)

By this approach [10] the potential of light (	� )—regardless its spectral
distribution—with respect to the light-exposed matter at temperature T can be
determined and accordingly 	� represents the upper limit of the amount of the
energy of photons that can be converted into chemical energy of electrons 	np. This
ability to perform work, i.e., via an ideal (fully reversible) process, of course, is
governed by the temperature T of the solid state probing the light. In contrast with
an incorrect intuition, even thermal-equilibrium radiation such as that from the Sun,
emitted at TSun D 6,000 K exhibits a particular non-vanishing chemical potential
for an Earth-based receiver at TEarth D 300K.

3.4.10 Kirchhoff’s Law for Non-ideal Black Bodies

Kirchhoff’s law for non-ideal black bodies (G.R. Kirchhoff, 1859, see [11])
combines the features of absorption and emission of spectrally selective bodies by
the interchange of radiative fluxes, as shown schematically in Fig. 3.15. A plate
of solid matter with properties indexed by 1 (reflection r1, absorption a1, and
transmission t1) is located opposite another plate of solid matter with ideal black-
body behavior and properties indexed by 2 (absorption a2 D 1, emissivity "2 D 1).
The two plates have been inside a box with walls at temperature T0 for a very long

Fig. 3.15 Exchange of
radiation between a
black-body absorber/receiver
(properties indexed by 2) and
a ‘grey’ body (indexed by 1)
with absorptivity, emissivity,
and transmission 0 < a1 < 1,
0 < "1 < 1, and 0 < t1 < 1,
respectively
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time, in order to ensure steady-state and thermal-equilibrium conditions. The walls
of this box also exhibit ideal black-body behavior.

The light flux arriving at plate 1 from plate 2 is partially reflected r1, partially
absorbed a1, and partially transmitted t1, so that energy flux conservation reads

r1 C a1 C t1 D 1 : (3.60)

On the other hand, plate 2 also emits, reflects, and absorbs fluxes, and the balance
between plate 1 and plate 2 reads

�SBT
4
2 r1 C �SBT

4
1 "1 C �SBT

4
0 "0t1 D �SBT

4
2 "2 : (3.61)

Thermal equilibrium implies that T0 D T1 D T2, and furthermore, as a consequence
of the ideal black-body behavior, "0 D "2 D a2 D 1, so

r1 C "1 C t1 D 1 : (3.62)

For any photon energy the combination of Eqs. (3.60) and (3.62) yields

"1.!/ D a1.!/ : (3.63)

A violation of this relation would immediately lead to a contradiction with the
second law, since a piece of matter exhibiting "1.!/ ¤ a1.!/ in a stationary
radiative balance with another (reference) body would either heat up more than
the reference "1.!/ < a1.!/ or achieve a lower temperature than the reference
"1.!/ > a1.!/.

3.4.11 Spectrally Selective Radiators and Absorbers

Real solids always show spectrally selective behavior since they are composed of
electrons and ions, both of which provide access for the electric field component
of photons to periodically displace these charges from their equilibrium positions.
In the simplest ansatz of the one-electron picture, the displacement of a charge is
formulated by an oscillator with a resonance frequency!0, a force driving the charge
back to the equilibrium position dependent on the displacement, and a damping
term. This ansatz leads to the well known frequency dependence of the amplitude
and the phase of the oscillator (remember the harmonic oscillator), representing here
the dependence of the optical properties of the given material on the frequency of
the photons (the frequency is easily translated into the wavelength of photons).

With spectrally selective behavior, the input (absorption) of radiation in a
specific frequency range can be adjusted very efficiently to where the emission
of the Sun is strong (see Fig. 3.16), e.g., for photon energies „! 
 0:5 eV. The
unavoidable emission of the receiver due to its substantially lower temperature
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Fig. 3.16 Normalized
spectral energy fluxes of a hot
(6,000 K) and a cold (300 K)
black-body radiator, shown to
visualize the option of
spectral selectivity
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(in the neighborhood of 300 K for an Earth-based receiver) might be minimized
by low spectral emissivity/absorption in the low-photon-energy regime (0 � „! �
0:5 eV).

The approach of tailoring the spectral absorption/emissivity becomes more
effective the less spectral overlap exists between the regime of the incoming light to
be collected and the emitted output radiation.
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Chapter 4
Theoretical Limits for Solar Light Conversion

The conversion of light into different types of energy is based upon the interaction
of electromagnetic radiation with matter. The matter might be represented by
atoms, molecules, small clusters, liquids, or solids, such as metals, semiconductors,
or dielectrics, and the radiation may be formulated in the wave approach with
Maxwell’s equations. The light-matter interaction also may be expressed in the
particle picture with Hamiltonians for each of the relevant species and by the
appropriate vector potential for the radiation.

In the particular case of a thermal-equilibrium light source, the Sun, and a
receiver on the Earth, thermodynamic principles are applied to express the relevant
processes quantitatively, especially for steady-state conditions.

In the first part of this chapter, a general approach is chosen to determine the
limits, subdividing the problem as follows:

• Transport of photons from the Sun and their interaction with matter on Earth to
achieve a state departing substantially from the Earth’s equilibrium temperature
which is assumed to be constant and not depending on what is done with the
incoming solar radiation in terms of conversion into chemical energy and its
storage.

• Transformation of this state by an ideal engine into usable mechanical, electrical,
or chemical work. By this approach, we can determine the uppermost limit for
terrestrial solar energy harvesting, of which the maximum theoretical efficiency
is achieved under highest possible solar light concentration.

In the second part we examine particular details of electronic systems and their
excitation by solar light. Here we exploit the insights gained in the first part
concerning transport of photons, concentration of sunlight, and spectral splitting,1

and the possibilities offered by spectrally dependent emissivity and absorption.

1Spectral splitting means the subdivision of the solar spectrum into different parts and their
subsequent individual conversion.

© Springer-Verlag Berlin Heidelberg 2015
G.H. Bauer, Photovoltaic Solar Energy Conversion, Lecture Notes in Physics 901,
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The analytical description of the performance of solar light collection and its
conversion into electrical energy is performed for steady-state conditions with a
‘stable’ temperature TEarth as that of a heat reservoir at the low-temperature side.

4.1 Endoreversible Thermodynamics

In the approach referred to as endoreversible thermodynamics2 [1], heat currents
from high- and low-temperature reservoirs are supplied in a non-reversible way,
i.e., irreversibly, to a reversibly working thermodynamic engine. Figure 4.1 shows a
schematic representation of heat reservoirs with high and low temperatures TH and
TC, heats PQH.TH/ and PQC.TC/ supplied in a non-reversible way to the engine, e.g.,
a Carnot engine (CE), of which the output is work PW . Of course, the efficiency of
this setup is the Carnot efficiency �C, expressed in terms of the temperatures Tl, Tm

of the intermediate levels � D �C D 1�Tm=Tl. However, for our problem, we wish
to know the efficiency as a function of the outer temperatures TH and TC, and the
transport terms a1 and a2, which govern the heat PQi;j D ai;j.T

n
i � T n

j / transmitted
through the medium. Put simply, for n D 1, we describe heat conduction through
a medium with thermal conduction a and temperature difference •T D Ti � Tj, or
we formulate a general heat which originates from a source as thermal equilibrium
radiation by PQrad;ij D ai;j.T

4
i � T 4j /.

Fig. 4.1 Schematic design of
a Curzon–Ahlborn engine
with reversible part in the
center and irreversible supply
of heats for the Carnot engine
(CE) through heat conducting
media (heat conductor a1, a2/
from/to the external reservoirs
with temperatures TH and TC

TH

TC

QC

QH

W

a1

CE

a2

Tl

Tm

reversible
part

QC
* ··

·

2The Greek prefix ‘endo’ means ‘internal’, so the idea here is that the internal process is reversible.
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4.1.1 Curzon–Ahlborn Approach

For didactic reasons, since this approach allows for an analytic solution of the
overall efficiency, the heat transport term PQi;j D ai;j.T

1
i � T 1j / is chosen and we

thus describe thermal conduction of the respective heats3 supplied to the Carnot
engine (see Fig. 4.1) [2, 3]. We have

PQH D a1.TH � Tl/ ; (4.1)

� PQC D PQ�
C D a2.Tm � TC/ ; (4.2)

and with

�C D � D 1 � Tm

Tl
; (4.3)

we get

Tm D Tl.1 � �/

or analogously

Tl D Tm
1

1 � �
:

From Clausius’s relation for the internal reversible import of heats ( PQi) to the Carnot
engine, viz.,

0 D
X PQi

Ti
D

PQH

Tl
C

PQC

Tm
D

PQH

Tl
�

PQ�
C

Tm
;

we rewrite the products of the heats and corresponding temperatures, viz.,

PQHTm D PQ�
CTl D � PQCTl D a1.TH � Tl/Tm D a2.Tm � TC/Tl ; (4.4)

which can be converted into equations of the form Tl D Tl.TH; TC; a1; a2/ and Tm D
Tm.TH; TC; a1; a2/ as functions of the ‘outer’ temperatures and depending on the
transport terms, using

a1.TH � Tl/Tl.1 � �/ D a2
�
Tl.1 � �/ � TC

�
Tl (4.5)

3Heats and work are regarded as flowing magnitudes infinitesimally slowly fed to or extracted from
the system, in order to allow for the application of thermal-equilibrium relations.
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and

a1

�

TH � Tm
1

1 � �
�

Tm D a2.Tm � TC/Tm
1

1 � �
; (4.6)

to obtain

Tl D a1

a1 C a2
TH C a2

a1 C a2

1

1 � �
TC (4.7)

and

Tm D a1

a1 C a2
.1 � �/TH C a2

a1 C a2
TC : (4.8)

With these expressions, we use PQH D a1.TH � Tl/ and PW D � PQH to derive the
relations

PQH D a1TH �a1 a1

a1 C a2
TH � a1a2

a1 C a2

1

1 � �
TC D a1a2

a1 C a2

1

1 � �
�
TH.1��/�TC

�

(4.9)

and

PQH D a� 1

1 � �

�
TH.1 � �/ � TC

�
; (4.10)

for the heat, together with

PW D
�

a1a2

a1 C a2

�
�

1 � �

�
TH.1��/�TC

� D a� �

1 � �

�
TH.1��/�TC

�
; (4.11)

for the output work.
The efficiency �, which is, of course, still the Carnot efficiency � D 1 � TC=TH,

is expressed as a function of the outer temperatures and the transport terms through
a� D a1a2=.a1 C a2/, together with the amount of heat PQH from the high-
temperature reservoir:

� D a�TH � PQH � a�TC

a�TH � PQH
D 1 � a� TC

a�TH � PQH
D 1 � TC

TH � PQH=a� : (4.12)

This Curzon–Ahlborn efficiency resembles the Carnot efficiency except that the
denominator contains PQH and the transport term a�. For infinite heat conduction
(a� ! 1) and/or vanishing heat ( PQH ! 0), we get the Carnot efficiency

�C D � D 1 � TC

TH
D 1 � Tm

Tl
:
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Fig. 4.2 Characteristic magnitudes of the heats PQH and PQ�

C and work PW in arbitrary units for
a Curzon–Ahlborn engine as a function of efficiency � and heats and output work (upper left)
for different transport terms a1, a2, a� D a1a2=.a1 C a2/; temperatures chosen for these plots
TH D 3TC

The regime 0 � � � �C represents the operation as a heat engine, whereas �C �
� � 1 with PQH � 0 and PW � 0 designate the operation of the device as a heat
pump and cooler, respectively (see Fig. 4.2). For approaching internal temperatures
Tl ! Tm the Carnot efficiency vanishes and the entire setup acts as simple heat
conductor ( PQH D PQ�

C D a�.TH � TC/).
For the extreme situation of TC ! 0, the Carnot efficiency approaches unity

�C ! 1 and the heat PQH fed to the engine at TH only depends on the transport
term a�. Since PQC D a�.1 � �/TH � a�TC is linear in � and for this particular
case � D �C D 1, the output work PW and the heat PQC at the low-temperature
side superimpose linearly on PQH. The situation of � D 1 can only be prepared
with infinite transport term a� ! 1 or with PQH ! 0. For the first option (a� !
1), using the Clausius relation for an ideal Carnot cycle PQH=TH D PQ�

C=TC and
PQC= PQH D T �

C =TH, and for TH > 0 and as TC ! 0, we find PQH ¤ PQH .�/ D
constant, and moreover we deduce PQC ! 0 neither heat pumping nor cooling can
be achieved (see Fig. 4.3)
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Fig. 4.4 Schematic design of a Boltzmann engine obtained by replacing the exponent unity in
the temperature dependence of the transport terms of a Curzon–Ahlborn engine by four, which
represents the Stefan–Boltzmann dependence

4.1.2 Stefan–Boltzmann Approach

The Boltzmann engine (as it is called by deVos [3]) looks similar to the Curzon–
Ahlborn device, except that the transport terms differ with regard to the exponents
of the relevant temperatures. Indeed, instead of the exponent unity in the relation
PQi;j D ai;j.T

1
i � T 1j /, which is valid for regular heat conduction, we write the

equivalent for Planck’s radiation law with PQi;j D bi;j.T
4

i � T 4j /. Figure 4.4 shows
the schematic setup for this type of device.

The appropriate set of equations for PQH, PQC, Tl, and Tm then reads

PQH D b1.T
4

H � T 4l / ; (4.13)

� PQC D PQ�
C D b2.T

4
m � T 4C / ; (4.14)
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and we use once again

�C D � D 1 � Tm

Tl

to get the internal temperatures

Tm D Tl.1 � �/ ; Tl D Tm
1

1 � � ;

together with

PQHTm D PQ�
CTl D � PQCTl D b1.T

4
H � T 4l /Tm D b2.T

4
m � T 4C /Tl ; (4.15)

finally yielding

Tl D b1T
4

H

b1 C b2.1 � �/3 C b2TC

b1.1 � �/C b2.1 � �/4 (4.16)

and

Tm D b1.1� �/4T 4H
b1 C b2.1 � �/3

C b2.1 � �/3TC

b1 C b2.1 � �/3 : (4.17)

We thus obtain the heat PQH and work PW from PQH D b1.T
4

H�T 4l / and PW D � PQH

with

PQH D b1b2
TH.1 � �/4 � T 4C

b1.1 � �/C b2.1 � �/4
(4.18)

or

PW D b1b2�
TH.1 � �/4 � T 4C

b1.1 � �/C b2.1 � �/4
: (4.19)

Figure 4.5 shows the heat PQH of the hot side and the work PW as a function
of the efficiency � for a set of transport terms b1, b2. Here ‘heat’ transport terms
bi are to be understood as combination of emissivity, Stefan–Boltzmann’s constant
(�SB D 5:68�10�8 W m�2 K�4), and solid angle into which the radiation is emitted.

The quality of heat and work of the Boltzmann engine are similar to those of the
Curzon–Ahlborn engine. However, the shape of the functions PQH D PQH.�/ and
PW D PW .�/ differ due to the fourth power dependence on temperatures, viz., T 4H,
T 4C , and .1 � �/4.



46 4 Theoretical Limits for Solar Light Conversion

0 0.2 0.4 0.6 0.8 1
efficiency h

–1

–0.5

0

0.5

1

1.5

2

taeh
Q. H

bra
.

nu
.

0 0.2 0.4 0.6 0.8 1
efficiency h

–1

–0.5

0

0.5

1

1.5

2

krow
W.

bra
.

nu
.

S2 = 20

S1 = 0…20

S1 = 0…20

S2 = 20

.

Fig. 4.5 Heat (left) and output work (right) of a Boltzmann engine versus efficiency for transport
terms 0 � b1 � 20, b2 D 20; exemplarily chosen TH D 2TC

TSun

Sun receiver

Trec, E,  S,

Sgen

JЄ Sun ~ T4
Sun

work W
h

e
a
t

Q
JS,Sun ~ T3

Sun

J
Є

~
T

4
re

c

J
S,rec

~
T

3
re

c
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4.1.3 Maximum Conversion Efficiency of Black Body
Radiation with a Thermal Receiver in the Limit
of Vanishing Output Power

By analogy with the free energy concept of an ideal gas F D U �TS , which defines
that part of the internal energyU of a system that can be converted into mechanical,
chemical, or electrical energy, we study the free energy of photons originating from
a thermal equilibrium source at TSun and being absorbed by a receiver in thermal
equilibrium and at temperature Tabs (see Fig. 4.6).

Here we consider the magnitudes entering a receiver (kept at temperature Trec),
such as energy and entropy flows from the sun, defined as J�;Sun, JS;Sun, as well
as some heat flow PQ from the environment of the receiver, and accordingly the
magnitudes leaving the receiver, like the flows of energy, entropy, J�;rec, JS;rec, and
of course, the flow of work PWrec.
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In order to formulate the balances of energy and entropy of this receiver system
we introduce the internal variables as time derivatives of internal energy and entropy,
PEint, PSint, and in addition of the increase in internal entropy due to irreversible

processes in the receiver PSgen.
The balances of energy and entropy flows are expressed by these rate equa-

tions [4]

PEint D J�;Sun � J�;rec C PQ � PW (4.20)

and

PSint D JS;Sun � JS;rec C
PQ
Trec

C PSgen ; (4.21)

In the stationary state, each of the internal magnitudes is constant and consequently
their time derivatives vanish PEint D 0, PSint D 0.

According to the concept of Helmholtz free energy (commonly named F ) and
with the condition for stationarity of the internal magnitudes4 we derive

PFint D PEint � PSintTrec D 0

D J�;Sun � JS;SunTrec � .J�;rec � JS;recTrec/C PQ �
PQ

Trec
Trec � PW � PSgenTrec :

(4.22)

After rearrangement, we get

PW D .J�;Sun � JS;SunTrec/ � .J�;rec � JS;recTrec/� PSgenTrec ; (4.23)

where the additional entropy generation in the absorber PSgen 
 0 and, of course,
Trec > 0. Since PSgen depends on the particular process and is not known generally,
we drop that term and write instead

PW 5 .J�;Sun � JS;SunTrec/� .J�;rec � JS;recTrec/ : (4.24)

This Landsberg efficiency [4] for the conversion of black body radiation J�;Sun.TSun/

is defined as �PL D PW =J�;Sun, whence

�PL 5 1 � JS;SunTrec

J�;Sun
�
�
J�;rec

J�;Sun
� JS;recTrec

J�;Sun

�

(4.25)

D 1 � JS;SunTrec

J�;Sun
� J�;rec

J�;Sun

�

1 � JS;recTrec

J�;rec

�

:

4Note, that PE, PS , and PSgen are time derivatives of the internal magnitudes of the receiver system.
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Introducing the dependence of energy and entropy fluxes on the corresponding
temperature (Sect. 3.4.8), viz., J�;i D �SB�iT

4
i and JS;i D 4

3
�SB�iT

3
i , into (4.25), it

follows that

�PL 5 1 � 4Trec

3TSun
� T 4rec

T 4Sun

�

1 � 4

3

�

(4.26)

D 1 � Trec

TSun
� 1

3

"
Trec

TSun
�
�
Trec

TSun

�4#

:

We recognize that the efficiency �PL is bounded by the Carnot efficiency 1 �
Trec=TSun reduced by an additional factor

�PL 5 �C � 1

3

"
Trec

TSun
�
�
Trec

TSun

�4#

; (4.27)

which accounts for the transport of the generalized heats in form of photons
with dependence of the respective energy flows by T 4 at variance with pure heat
conduction in a Carnot engine with linear dependence on temperature T .

We have assumed so far that the receiver temperature Trec equals the temperature
of the heat sink, which is the temperature Tenv of the environment, e.g., that of the
Earth TEarth. For the heat transport from the low temperature side of the receiver to
the environment, a vanishing temperature gradient would be available which would
allow only for a vanishing heat flux between receiver and environment, also reducing
to zero that fraction of the ‘solar heat’ to be converted into work. The efficiency
�PL accordingly yields the maximum efficiency for conversion of solar radiation for
negligible output power (see Fig. 4.7).

With the two temperatures TSun D 6;000K and TEarth D 300K for the heat
source and heat sink, the regime of the absorber temperature ranges over 300 �
Trec � 6;000K. For Trec D TEarth D 300K, the efficiency reaches the maximum

Fig. 4.7 Efficiency �PL of
solar energy conversion
calculated on the basis of the
free energy of solar photons
[4] in comparison with the
Carnot efficiency �C. For the
limit of .Trec D TEarth/, the
temperature difference
needed for the extraction of
heat at the cold side vanishes
and in turn the output work
also disappears 0 0.2 0.4 0.6 0.8 1

temperature ratio Trec TSun

0
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0.4

0.6
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value �PL D 0:933. However, Trec D TEarth does not allow for extraction of work
from the device ( PW D 0).

4.1.4 Mueser Approach

A substantial simplification of the concept of the Stefan–Boltzmann approach
consists of directly linking the low temperature side of the reversibly operating heat
engine (Carnot engine CE) to the low temperature heat reservoir TC (see Fig. 4.8)
[5]. We assume the receiver to get the solar insolation under the solid angle˝in and
to emits its radiation into the solid angle˝out which in the general case of a spheric
receiver amounts to ˝out D 4� . In the language of the Stefan–Boltzmann engine,
for the Mueser engine the transport term gets b2 ! 1 and, setting TH D TSun and
TC D TEarth, the balance for input from Sun and environment and for output energy
fluxes from receiver and in particular with the heat flux PQH to the Carnot engine
reads

˝in"Sun�SBT
4

Sun˛rec C .4� �˝in/ "env�SBT
4

env˛rec D ˝out"rec�SBT
4

rec C PQH

(4.28)

The heat PQH available at the level of Trec is converted to work PW with the Carnot
efficiency �C . Here, ˝in, ˝out, "Sun, "env, "rec, ˛rec, designate solid angle for the
reception of solar light (including sunlight concentration when ˝in > ˝Sun), solid
angle for light emission ˝out, emissivity of the Sun, of the environment, of the
receiver, and absorptivity of the receiver.

Setting

PQH D
PW
�C

D
PW

1 � TC=Trec
;

Fig. 4.8 Schematic design of
a Mueser engine. The Mueser
approach is a simplification
of the Boltzmann engine in
which the low-temperature
side of the Carnot engine is
directly connected to the heat
reservoir at temperature TC

QH= b1(TH
4-Trec

4)

TH

TC

W

b1

CE

Trec

reversible
part

QC*
.

.

.
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the above flow balance is rewritten to give the work over the Carnot efficiency, viz.,

˝in"Sun�SBT
4

Sun˛recC.4� �˝in/ "Univ�SBT
4

Univ˛rec�˝out"rec�SBT
4

rec D
PW

1 � TEarth=Trec
(4.29)

Relating the work PW to the input from the Sun ˝in"Sun�SBT
4

Sun and assuming
ideal black body emitter (Sun, environment), as well as receiver properties with
"Sun D "env D "rec D ˛rec D 1, one obtains the efficiency of the Mueser engine

�Mues D
"

1 � ˝out

˝in

�
Trec

TSun

�4
C .4� �˝in/

˝in

�
Tenv

TSun

�4#�

1 � TEarth

Trec

�

: (4.30)

Basically, the radiation input from the environment might be composed of the
contributions from the global neighborhood and from the Universe weighted by
their individual solid angles. For the sake of simplicity, one might neglect the term
from the environment since its share is weighted by the factor .Tenv=TSun/

4 which
for Tenv D TEarth D 300K and also for Tenv D TUniv D 3K is very small. Finally,
one obtains with good approximation

�Mues D
"

1 � ˝out

˝in

�
Trec

TSun

�4#�

1 � TEarth

Trec

�

: (4.31)

This efficiency comprises a term describing the influence of the energy transport
by photons (rectangular brackets) together with a second term, the Carnot efficiency.
The solid angle in which the Sun appears for an Earth-based observer without light
concentration amounts to ˝in D ˝Sun D 5:3 � 10�6, that may be increased by
concentration to ˝in > ˝Sun; accordingly the solid angle for the contribution of
the environment under concentrated sunlight .4� � ˝in/ decreases. For maximum
solar light concentration (˝in D 4�) the receiver does not see but the Sun and the
solid angles for reception and emission are identical ˝in D ˝out D 4� . In this
case, from the fifth order relation of Trec D Trec.TSun; TEarth; �Mues/ it is easy to see,5

that the highest receiver temperature achievable is .Trec=TSun/ D 1, provided the
Mueser efficiency vanishes (�Mues ! 0); accordingly no heat must be transferred
to the Carnot engine ( PQH D 0), which likewise means that the output power of the
converter vanishes PW D 0. In this mode of operation, the entire radiative energy
from the Sun to the receiver is given back to the Sun radiatively.

5After rearrangement the relation for the Mueser efficiency reads

�
Trec

TSun

�5
�
�
TEarth

TSun

��
Trec

TSun

�4
C .�Mues � 1/

�
Trec

TSun

�

C
�
TEarth

TSun

�

D 0 (4.32)
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Fig. 4.9 Efficiency �Mues of a Mueser engine versus normalized receiver temperature Trec=TSun

for different levels of solar light concentration. Each of these efficiency values has been calculated
for a spherical receiver at lower temperature TEarth D 300K. Here the input photons are collected
with the area �R2rec, whereas the output light is emitted from area 4�R2rec. For a solar thermal
receiver device, one would certainly choose identical input and output areas, e.g., a one sided open
flat absorber and thus gain the factor 4 in the balance of flows per area and the factor of 4

p
4 in the

maximum achievable receiver temperature

The lower the temperature of the receiver is adjusted (for any concentration
.˝in > ˝Sun/) the more heat is fed into the engine. However, the more heat,
the lower the receiver temperature and the lower the Carnot factor to make work
out of it. For the lowest possible receiver temperature Trec D TEarth, the heat PQH

is maximum, accompanied by the minimum radiation ‘losses’ emitted from the
receiver, but the Carnot efficiency approaches zero.

Figure 4.9 displays the Mueser efficiencies for a variety of concentration
factors C as a function of the receiver temperature Trec. The maximum conversion
efficiency �Mues D 0:86 for Earth-based devices is thus achieved at maximum light
concentration with an optimum receiver temperature Trec; opt � 2;450K.

A representation of a device for which ˝in D ˝out [6] resembling a Mueser
engine is schematically depicted in Fig. 4.10. The receiver is surrounded by an ideal
mirror with reflection factor unity and held at a temperature T D 0, with an aperture
size A such that the receiver only sees the Sun or itself via the mirror. The receiver
is connected to a Carnot engine which is to be supplied by heat at Trec. The low
temperature side of the Carnot engine is connected to the environment at TEarth.
Using the above equations, the corresponding output work reads

PW D �
˝in"Sun�STBT

4
Sun˛rec �˝out"rec�STBT

4
rec

�
�

1 � TEarth

Trec

�

: (4.33)
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Fig. 4.10 Schematic
realization of a Mueser
engine. A black receiver is
surrounded by an ‘ideal’
mirror with aperture A, so
that the receiver only sees the
Sun or itself (implying
maximum concentration of
solar light to the absorber)
[6]. The receiver at
temperature Trec is connected
to a Carnot engine (CE)
which is attached to the Earth
at the low temperature side
(TEarth D 300K)

Again with "Sun D "rec D ˛rec D 1, and ˝in D ˝out

PW D ˝in�STBT
4

Sun

 

1�
�
Trec

Tsun

�4!�

1 � TEarth

Trec

�

; (4.34)

we get the efficiency � D . PW /=.˝in�STBT
4

Sun/ of this device

� D
"

1 �
�
Trec

TSun

�4#�

1 � TEarth

Trec

�

: (4.35)

This relation also obviously consists of the term describing the ‘effectiveness’ of the
photon transport from the Sun at TSun to a receiver at Trec, this being weighted by
the Carnot efficiency which is also governed by the receiver temperature Trec.

4.1.5 Temperatures and Limits of Efficiency for Planets
of the Solar System

Analogously with the radiative balance outlined in Sect. 3.3, the temperature of
objects orbiting around the Sun as a function of distance dSP (orbital radius) and
hence the performance for solar light conversion by a Mueser engine in such a solar
orbit can be estimated (see also [3]). For a rough approximation, to be applied to
the different planets in our solar System, one once again assumes ideal ‘black’
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Fig. 4.11 Temperature of ideal black (spherical) receivers/emitters versus distance from the Sun.
Positions of planets of the solar system are indicated, although some of them, particularly those in
the outer orbits, do not behave as black bodies

receiver/emitter properties and writes the respective temperature6 TP.dSP/ as a
function of their distance from the Sun (see Fig. 4.11)7:

TP � 4

vu
u
t1

4

�
RSun

dSP

�2
T 4Sun C

"

1 �
�
1

4

��
RSun

dSP

�2#

T 4Univ : (4.36)

Figure 4.12 shows the Mueser engine efficiencies for non-concentrated sunlight
versus the temperature that could be associated to distances dSP of planets from the
Sun listed above in Fig. 4.11. On the first view it seems amazing that the maximum
Mueser engine efficiency does not depend on the distance dSP of the respective
planet, but, since the increasing dilution of solar light versus distance from the
source and the corresponding decrease in maximum temperature of the hot side
of the Mueser engine is just compensated by the analogous decrease of temperature
of the “cold” side of the Carnot engine attached to the planet.

6The true planetary temperatures can depart substantially from those estimated here with the
assumption of ideal ‘black’ receivers/emitters, due to their individual compositions and spectrally
dependent absorptivities and emissivities.
7Here the corresponding solid angles for the light input depend on the distance dSP and are replaced
by ˝in.dSP/ D .1=4/ .RSun=dSP/

2.
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Fig. 4.12 Theoretical
efficiency of spherical
Mueser engine receivers for
unconcentrated sunlight
versus temperature for
hypothetical black body
planets with temperatures
according to assumptions in
Fig. 4.11
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4.1.6 Spectrally Selective Absorbers/Emitters

As already sketched schematically in Sect. 3.4.11, the balance of incoming radiation
versus radiation output might be beneficially tuned by high spectral absorption for
the incoming light and low spectral emission for the main wavelength regime in
which the receiver emits, provided that the temperatures of the source and of the
receiver differ considerably from one another (see Fig. 3.16). Thus, with spectral
selectivity, which is expressed through the absorptivity ˛rec.„!/ and emissivity
"rec.„!/, the energy flow balance to an engine with a receiver exposed to solar
radiation in the solid angle ˝in and emitting via solid angle ˝out when neglecting
the contribution from the environment or the Universe resp. writes

˝in
1

c204�
3„3

Z 1

0

˛rec .„!/ .„!/3

exp

� „!
kTSun

�

� 1
d .„!/

D 1

c204�
3„3 4�

Z 1

0

"rec .„!/ .„!/3

exp

� „!
kT rec

�

� 1

d.„!/C PQH ;

(4.37)

where 4� represents the solid angle for emission and ˛rec.„!/ D "rec.„!/ is the
spectrally strongly varying absorption or emissivity of the receiver.

For an extreme case of a step function in ˛rec.„!/ D "rec.„!/, viz.,

˛rec.0 � „! � „!g/ D 0 ; ˛rec.„!g < „! � 1/ D 1 ;

which allows for absorption only in the high photon energy range in which the solar
light is accepted by the receiver, the thermal receiver will not be able to emit a
substantial amount of photons due to its lower temperature.
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Fig. 4.13 Temperature of a
spectrally selective absorber,
ideally isolated from the
environment and only
exposed to a thermal
equilibrium radiator like the
Sun (TSun D 6;000K) versus
optical threshold energy
�g D „!g for different
degrees of solar light
concentration
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To demonstrate the effect of spectral selectivity, the ‘open circuit’-temperature
( PQH D 0) of a spectrally selective receiver versus optical threshold energy �g D „!g

is sketched in Fig. 4.13 for different levels of solar light concentration (contributions
from the Universe and from the terrestrial environment have been neglected).
Against intuition, the receiver temperature Trec for large threshold energies tends
asymptotically towards Trec.�g ! 1/ D TSun, regardless of the light concentration
factor .4�=˝in/.

The above balance of radiation and heat supplied to a Carnot engine is modified
by the restriction of the integrals to the appropriate photon energy range, viz., „!g �
„! � 1, with the result

PQH D ˝in
1

c204�
3„3

Z 1

„!g

.„!/3

exp

� „!
kTSun

�

� 1

d.„!/

�˝out
1

c204�
3„3

Z 1

„!g

.„!/3

exp

� „!
kT rec

�

� 1

d .„!/ : (4.38)

Figures 4.14 displays the output work of an engine in terms of heat PQH times the
Carnot efficiency as a function of the photon threshold energy „!g that separates
the two regimes of low and high absorption/emission. At high light concentration
factors, e.g., ˝in D ˝out D 4� , a decrease in Trec starting from Trec D TSun

results in a ‘walk’ along the uppermost curve of the function �Mues.Trec=TSun/, from
left to right. For this maximum solar light concentration, the spectral selectivity
of an absorber shows no beneficial effect for the efficiency compared to an ideal
‘black’ receiver, since the plots clearly show that the threshold energy approaches
zero „!g ! 0. Under these conditions the receiver only ‘sees’ the Sun and has to
compete in absorption and emission with the solar temperature.
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Fig. 4.14 Output work of a
Mueser engine versus
spectrally selective optical
threshold „!g for different
levels of sunlight
concentration
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For lower concentration factors, as indicated in Fig. 4.12, the spectral separation
of photon energy regimes with high absorption from those with low emissivity
provides for decent benefits in engine efficiency �Mues.„!g/, obviously emerging
in Fig. 4.14 in the output work W versus „!g for unconcentrated sunlight.

4.1.7 Multispectral Solar Light Conversion

An extension of the approach of spectrally selective absorption of solar light
consists of the individual use of photons of different spectral regimes of the
solar light, known as “spectrum splitting”. This strategy is also named ‘multi-
spectral’ solar energy conversion and it can be realized for instance by n individ-
ual spectrally selective absorbers, arranged optically in series with its particular
receiver temperature TH; i and each of them connected to its own Carnot engine
(Fig. 4.15) [3].

The balance of energy fluxes to and from the receiver system amongst those
from source Sun and environment (Earth) has to take into account also the exchange
of photons between one receiver and its neighbors. This means that, in order to
formulate the respective flows, the geometrical configuration of the receivers has to
be given, e.g., flat receivers arranged optically in series and sunlight under normal
incidence. Furthermore, for photon exchange between the receivers in particular
configurations, multilayer optics may have to be applied. The radiative balance of
one receiver (numbered i ) from which the relevant heat PQH;i is fed to the high
temperature side of the Carnot engine (CE) contains the contribution from the Sun
and from its neighbors at upper and lower positions numbered .i � 1/ and .i C 1/,
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Fig. 4.15 Schematic design
of a multispectral thermal
solar energy converter. Each
of the Carnot engines (CE) is
supplied by a particular
spectral section of the solar
radiation [3]
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respectively, and of course includes the part that is emitted:

PQH; i D ˝in
1

c204�
3„3

Z „!g; i�1

„!g; i

˛i .„!/ .„!/3

exp

� „!
kTSun

�

� 1
d.„!/

C2� 1

c204�
3„3

Z 1

„!g; i�1
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kT i�1
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C2� 1
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„!g; iC1
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exp

� „!
kT iC1

�

� 1

d.„!/

�4� 1

c204�
3„3

Z 1

„!g; i

"i .„!/ .„!/3

exp

� „!
kT i

�

� 1

d.„!/ : (4.39)

In order to determine the efficiency as a function of the number of spectrally
selective absorbers, as sketched in Fig. 4.16, we have assumed a multilayer stack
with solar light input in the solid angles ˝in D ˝Sun as well as ˝in D 4� . Each
layer (i ) emits towards front and towards rear side in the solid angle˝i;out D 2� by
equal flux upward towards the layer .i � 1/ and downwards towards the neighbor
.i C 1/. The lower neighbor .i C 1/ emits photons in the range „!iC1 � „! � 1,
but its upper neighbor only emits and sees those in „!i�1 � „! � 1, this being
represented by the absorption ˛i�1 .„!i�1 � „! � 1/ 
 0.

In the latter balance, neither reflection from the surface of the single layers nor
incomplete absorption within the relevant range „!i�1 � „! � „!i has been
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Fig. 4.16 Efficiency of a
multispectral thermal solar
energy converter based on
Mueser engines versus
number of individual
spectrally selective absorbers
[3]; unconcentrated sunlight
corresponds to ˝in D
�˝0 D � .RSun=dSE/

2,
maximum concentration
relates to˝in D 4�
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taken into account. This refinement would require inclusion of overnext nearest
neighbor emission and absorption, and in the end, one would have to couple each
layer optically to all others.

4.2 Electronic Band Systems for Solar Light Conversion

The photons from the Sun as electromagnetic wave packages with particular
energies in the few eV-range mainly couple to the electron system of solids. The
electrons in solids may occupy only specific regimes in the energy scale called bands
which result from the overlap of wave functions of weakly bound electrons in the
potential of an ion lattice formed by atoms or molecules. Figure 4.17 shows the
schematic development of energy bands from discrete energy levels by their mutual
interaction through the reduction of their spatial separation. This band behavior of
the electrons is commonly derived from solutions of the stationary Schrödinger
equation for electrons in a periodic potential provided by the positively charged
ions. In many materials, including most semiconductors, the interaction between
electrons can be neglected (independent-electron picture).8

8An intuitive way to understand the formation of energetic regimes allowed for electron occupation
is to consider a one-dimensional periodic arrangement of potential wells at a certain distance from
one another. In an isolated single well of limited depth exist a certain finite number m of discrete
energy levels, whereas in an arrangement of n such wells each of the m levels of one of the wells
interferes with the companion levels of type m of the other n � 1 wells to form an ensemble of
levels that are energetically split. The total energy separation of this splitting converges towards a
particular value, even for an infinite number of wells n ! 1. The behavior of such an infinite one-
dimensional arrangement of potential wells is formulated by the Kronig–Penney model [7, 8] which
can be solved analytically showing the formation of individual energy bands for the electrons.
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Fig. 4.17 Schematic formation of energy bands by increasing overlap of electron-wave functions
of individual atoms (levels �1, �2, �3) with decreasing inter-atomic distance (equilibrium next-
neighbor distance r0)

In thermal equilibrium at a temperature T , the probability that a state of energy
� is occupied is given by the Fermi–Dirac distribution function9

fF .�/ D



exp

� � �F

kT

�
C 1

��1
:

Here,10 �F designates the Fermi energy. The excitation of electrons in solids such
insulators or semiconductors by solar light may initiate an occupation of the
electronic levels that substantially departs from the thermal equilibrium distribution.
The ability of the photoexcited electron ensemble to deliver electric power to the
outside strongly depends on how well the photo-excited state, without return to the
thermal equilibrium, can be conserved and be transported to the borders of the light
absorber with its electric contacts.

9As the solid absorbers of solar light are commonly operated in the neighborhood of TEarth D 300K
boson behavior of electrons characterizing super conductivity is excluded.
10In the Fermi–Dirac distribution function the Fermi energy �F designates for moderate tempera-
tures the energetic position of the transition of the occupation probability from high (fF > 0:5) to
low (fF < 0:5), and in the particular case of T ! 0, the kink in the step-like distribution function
represents �F.
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4.2.1 Electronic Band System in Thermal Equilibrium

Our exemplary electronic system that is to be exposed to solar radiation consists
of two energy bands, a lower one named valence (VB) and an upper one named
conduction band (CB) with corresponding densities of states DVB.�/, and DCB.�/,
equivalently as the bands in an undoped semiconductor.11 These two bands are
separated by an energy gap �g exhibiting in our approach a value which corresponds
to photon energies frequently available in the solar spectrum. For the further
formulation by convention we name the energy of the upper edge of the valence
band �V, and equivalently the lower edge of the conduction band �C; accordingly
the band gap reads �g D .�C � �V/.

In thermal equilibrium in undoped semiconductors the entire number of electrons
in the respective volume element is conserved, and in other words the entire carrier
concentrations in the excited states, i.e., electrons in CB and empty states in VB,
called holes12 are identical. The total concentrations are found by integrating the
energy dependent concentrations n .�/ and p .�/ over the relevant energy range,
these being formulated as the product of the density of states and the respective
energy distribution function. As an example, for the electrons in the conduction
band with lower band edge �C,13

nCB D
Z 1

�C

DCB .�/ fn .�/ d� :

In thermal equilibrium, fn .�/ is given by the Fermi–Dirac distribution function

fF.�/ D



exp

� � �F

kT

�
C 1

��1
;

11Undoped means except the electrons in VB and CB no additional charges introduced by
impurities in the lattice exist. In undoped semiconductors and insulators for the temperature T ! 0

states in the valence band (DVB.�/) are completely occupied by electrons whereas conduction band
states are completely unoccupied.
12Basically in the semiclassical approach free electrons provide for transport of charges. Their
contribution to the electric current density in terms of velocity v and wave vector k reads j D
..�e/.1=.4�/// Roccup: v.k/dk with integration over all occupied states in the respective band. The
contribution of unoccupied states in this band can be formulated by the integral of a completely
occupied band which is vanishing (.1=.4�//

R
all states v.k/dk D 0) subtracting the supply of the

unoccupied states j D ..Ce/.1=.4�/// Runoccup: v.k/dk; accordingly the current density can be
formulated by the unoccupied states with apparent particles of positive elementary charge (holes)
moving in opposite direction compared to electrons (see Fig. 4.19 and [7]).
13For the sake of simplicity, in order to be able to evaluate the integral analytically, the upper limit
of the integral is commonly taken to be � ! 1 rather than the upper edge of CB, the vacuum
level �vac, and for typical temperatures, the Fermi distribution function reduces the contribution of
� > �vac to nCB to negligible values. An analogous simplification is applied for the lower boundary
value of the integral for holes � ! �1.
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and we get the charge neutrality condition for an undoped semiconductor

nCB D
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DCB .�/
1

exp

� � �F
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1C exp


�� � �F

kT

�d� ; (4.40)

which serves for the determination of the position of the Fermi energy, �F. In the
parabolic band approximation14 the densities of states in the three-dimensional
space are given by

DCB .�/ D
�
2m�

n

„2
�3=2

1

2�2
p
� � �C (4.41)

and

DVB .�/ D
�
2m�

p

„2
�3=2

1

2�2

p�� C �V ; (4.42)

(see Fig. 4.18) where m�
n and m�

p denote the effective masses of electrons in the
conduction band and of holes in the valence band.15

14At the minima and maxima of � D �.k/ that correspond to the top of the valence band � D �V

and the bottom of the conduction band � D �C, the energy of electrons or holes depends to a
good approximation quadratically on the wave vector � � k2. Using this dependence for a three-
dimensional solid, the density of states, again in the vicinity of �V and �C, yields D � p

�.
15The effective mass represents the effect of the periodic potential of the crystal on the motion
of electrons (and holes) in externally applied electric fields, and it is derived from the dispersion
relation � D �.k/ for the electrons [9] by
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Fig. 4.18 Density of states
D.�/ for valence and
conduction band in an
undoped three-dimensional
semiconductor with
directional isotropy, so-called
parabolic bands, in which the
approximation of quasi-free
electrons and holes is
satisfied with � � k2

resulting in D.�/ � p
�

conduction band
(T� 0, completely 
unoccupied )

є

D(є)
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єV
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With the above approximation and with Boltzmann energy distribution substi-
tuting the Fermi distribution function, the thermal equilibrium concentration of
electrons in the conduction band is

n0 D 2

�
m�

n kT

2�„2
�3=2

exp


��C � �F

kT

�
D NC exp



��C � �F

kT

�
(4.43)

and that of holes in the valence band analogously writes

p0 D 2

�
m�

p kT

2�„2
�3=2

exp


��F � �V

kT

�
D NV exp



��F � �V

kT

�
: (4.44)

For charge neutrality n0 D p0, these are combined to determine the thermal
equilibrium position of the Fermi level as

�F D �C C �V

2
C 1

2
kT ln

�
NV

NC

	

D
�
�C C �V

2

�

C 3

4
kT ln

�
m�

p

m�
n

	

; (4.45)

which says that the Fermi level �F is located somewhere midway between the two
levels �C and �V

16 and slightly shifted towards the band with the lower effective
mass17 (see Fig. 4.19).

16For the Fermi energy �F sufficiently separated from VB- and CB-edge, explicitly .�C ��F/ > 3kT
and .�F � �V/ > 3kT , the Boltzmann-energy distribution function is a reasonable approximation
of the Fermi distribution function.
17The effective masses in the upper relation may be regarded as an abbreviation of the respective
density of states.
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Fig. 4.19 Hole concept.
Representation of unoccupied
electron states in the lower
band (valence band) by holes
with thermal equilibrium
density p0 moving in
opposite direction compared
to electrons

equivalent
description
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4.2.2 Quasi-Fermi Levels in Electronic Band Systems

The thermal equilibrium occupation of electronic bands can be altered substantially
by excitation with photons of appropriate energy (in semiconductors one needs
„! 
 �g D .�C � �V/), and in consequence the electron and hole densities n0
and p0 get modified by additional�n and�p respectively. Here, we consider those
in the excited states, that is, electrons at energy � 
 �C and holes at � � �V:

nCB D n0 C�n D
Z 1

�C

DCBf
�

n .�/d� ; (4.46)

pVB D p0 C�p D
Z �1

�V

DVBf
�

p .�/d� : (4.47)

where the non-equilibrium distribution functions of electrons in the conduction band
f �

n .�/ and of holes in the valence band f �
p .�/ in general have to be expressed by a

complete set of transition rates from and to the respective energy levels in each of
the involved bands.

In the particular case of stationary excitation by photons, and of fast energy
(�) and wave vector (k) relaxation of electrons and holes in the bands (intraband
relaxation times � and k are usually much smaller than the interband relaxation
time, called recombination life time rec) the electron and hole ensembles obey
distributions with most likely probability, which means with the maximum number
of respective micro-states. This in turn justifies introducing the scalar magnitude
‘temperature’.

In inorganic semiconductors this condition of fast intraband relaxation18 after
excitation, compared to recombination life times is easily met with k and �

18Due to the � .k/ relation in crystals, wave-vector and energy relaxation times are in general not
equal, k ¤ � .
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Fig. 4.20 Schematic energy–wave vector diagram � D �.k/with relaxation of ‘hot’ photo excited
electrons within relaxation times � for energy and k wave vector. As a consequence of general
behavior of � D �.k/ ¤ „2k2=2m�, relaxation times for energy and wave vector are different
� ¤ k . An analogous consideration is valid for ‘hot’ holes in the valence band

of the order of .10�12 � 10�13/ s [8, 10, 11] whereas, dependent on the type of
semiconductor, recombination life times19 usually rec > 10�9 s (see Fig. 4.20).
In other words, electrons in CB and holes in VB exchange wave vector and
energy comparatively fast by scattering with their ‘companions’ and with the lattice
(phonons), so that their distributions can be formulated with a single temperature,
valid for electrons, for holes, and for phonons. The description of electron and hole
concentrations under these conditions, departing from thermal equilibrium, bases
upon Fermi statistics with individual Fermi levels for the charges in the respective
bands of the excited states, such as electrons in CB and holes in VB.20

We calculate the position of quasi-Fermi levels of electrons �Fn and of holes �Fp

from their entire concentrations in the conduction and in the valence band; since
the energetic regime of the occupation in the bands (�3kT) is small compared to the
width of the bands (some eV) we may approximate the densities of stateDCB.�/ and
DVB.�/ by the respective square root dependence on energy and moreover replace
the Fermi distribution by the classical Boltzmann energy distribution function valid

19For recombination lifetimes as small as the intraband relaxation times, we do not need to consider
such semiconductors for photovoltaic applications since the photoexcited state is not conserved
sufficiently long and thus the splitting of the quasi-Fermi levels becomes negligible.
20Whereas the densities of electrons in CB and of holes in VB are formulated with quasi-Fermi
distribution functions, their counterparts, the electrons in VB and the holes in CB are derived via
conservation of states nVB.�/ D DVB.�/

�
1� fp.�; �Fp/

�
, and pCB.�/ D DCB.�/ Œ1� fn.�; �Fn/�.
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for the low-density limit
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together with

pVB D p0 C�p D
Z �V

�1

DVB .�/
1

1C exp


�� � �Fp

kT

�d�

D
Z �V

�1

 
2m�

p

„2
!3=2

1

2�2
p
�V � �

h
exp


� � �F

kT

�
exp


�F � �Fp

kT

�i
d�

D NV exp


��F � �V

kT

�
exp


�F � �Fp

kT

�

D p0 exp

�F � �Fp

kT

�
; (4.49)

and hence

�Fn D �F C kT ln
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: (4.50)

Equivalently,

�Fp D �F C kT ln
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pVB
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; (4.51)

which leads to the splitting of the quasi-Fermi levels, indicating the usable work to
be delivered from the electron–hole system, viz., the chemical potential 	np of this
ensemble

�Fn � �Fp D ��F D 	np D kT ln

�
nCBpVB

n0p0

	

D kT ln

�

1C �n�p

n0p0

	

: (4.52)
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Of course, for a thermal equilibrium occupation of valence and conduction band,
one obtains

	np;0 D kT ln

�
n0p0

n0p0

	

D 0 :

Commonly nCB and pVB both increase with photo excitation where�n and�p may
depend on some power 
 of the light flux ˚.�n�p � ˚
/ where 
 is indicating the
type of recombination kinetics.

4.2.3 Electronic Band System Exposed to Solar Radiation

We expose an ideal electronic band system, kept at temperature Tabs D TEarth and
electrically completely isolated, to sunlight. Due to the system’s ideal properties
only radiative transitions for excitation as well as for recombination of charge
carriers between VB and CB are allowed as shown schematically in Fig. 4.21. Since
charges are neither removed from the absorbing system nor injected into it, this
operation21 represents in terms of stationary carrier concentrations in the bands the
maximum departure from thermal equilibrium, or in other words the highest level
of photo excitation.

With complete intraband carrier relaxation after photo excitation we express the
balance of the solar photons sent to the absorber and the photons emitted from
the absorber as a consequence of the radiative recombination. Solar photons with
energy beyond the band gap „! 
 .�C � �V/ D �g, are completely absorbed,
reflection of these photons is excluded. The photoexcited stationary state of the
electron–hole ensemble is characterized by its chemical potential 	np D .�Fn � �Fp/

(see Sect. 3.4.9) that equals the chemical potential of the radiation emitted by the

Fig. 4.21 Electronic two-band system in which fermions (electrons and holes) and bosons
(photons) are coupled via rate equations for absorption and emission, from which a stationary
state for level occupation and the photon density are derived

21This mode of operation is called “open circuit”.
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absorber 	� D 	np. The photon flux from such an excited electron–hole-ensemble
may be formulated by the generalization of Planck’s radiation equation which
expresses the emission of photons [12] by a non-vanishing chemical potential.
Accordingly we obtain the photon flux from Sun and Universe into as well as from
the absorber to its environment.
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This relation introduces the light from the Sun, seen under solid angle ˝in, already
containing eventual solar light concentration (˝in 
 �˝0), the radiation from the
Universe, almost always negligible, and the light generated in the band system
emitted here into the solid angle ˝out D 4� . The entire radiation emitted by the
absorber with Tabs D TEarth � TSun has to equalize the photon input from the Sun
which goes with T 4Sun. The particular increase of the emission of the absorber by the
according factor of .TSun=TEarth/

4 D .20/4 D 1:6 � 105 is formally provided (in
the denominator of the exponential function of the integral on the right hand side
above) by the chemical potential of the electron–hole system 	np;oc.

In an attempt to visualize the conservation of the particle fluxes, we introduce the
photon flux ��;in.TSun/ from the Sun into a volume element dV of the absorber,22

the photon flux emitted from the absorber ��;out.Tabs; 	/. In open-circuit conditions
any charge flux from or to the absorber, maintained by electrons and/or holes and
resulting in an electric current density �el is ruled out. The conservation of photon
fluxes sketched schematically in Fig. 4.22 then reads:

��;in D ��;out : (4.54)

For this flow balance, the conservation of the etendue "i (radiance) [13] of the
photon flows [14] is not necessarily conserved (˝in < ˝out).

Although not mentioned explicitly, the excess energy of solar photons transferred
to electrons and holes and converted into heat during fast relaxation has to be
removed from the absorber in order to keep it at constant ambient temperature
Tabs D TEarth.

22Here it is assumed that each photon with energy beyond the threshold for absorption, viz., „! �
�g D �C � �V, generates one electron–hole pair, which recombines after a certain time and creates
one photon. Any nonlinear generation and/or recombination process, such as impact ionization and
Auger recombination, is neglected.
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Fig. 4.22 Conservation of
the photon fluxes
��;in D ��;out in an ideal
electronic band system
operated in open circuit
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The last integral equation (Eq. (4.53)) serves to determine 	np; oc, as a function
of the band gap �g and of the solar light concentration (˝in, ˝out), because each of
the other variables is in principle given. An approximation23 for sufficiently large
band gaps in comparison with kTabs.300K/ D 0:026 eV and with above all kTSun D
0:52 eV, hence for �g 
 0:5 eV, yields [15]

	np; oc D �"F;oc D �g
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�

CkTabs ln
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�kTabs ln

�
˝out

˝in

	

: (4.55)

23The above approximation is based upon neglecting the contribution of photons from the Universe.
Despite the large solid angle from which the absorbers might receive such photons, .4� � ˝in/,
the low background temperature of the Universe TUniv D 3K makes this part negligible. The
marginal contribution of photons from stars and the Moon are also neglected. The modified balance
after replacing the Bose–Einstein distribution function by the Boltzmann energy distribution and
assuming the solid angle for emission ˝out D 4� becomes
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Introducing the analytical solution of
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and finally one obtains
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Fig. 4.23 Maximum
achievable electron–hole
chemical potential 	np

indicating maximum
achievable open-circuit
voltage eVoc � 	np versus
optical threshold energy
(band gap) under solar
radiation without and with
maximum concentration
(ideal electronic band system
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The above result represents the chemical potential, or the splitting of the Fermi
levels in a spatially homogeneous volume element without carrier extraction
or injection, and consequently describes the behavior in open-circuit operation
(subscript oc).

The first term of the relation contains the optical band gap �g, which is modified
by a sort of Carnot factor. Numerically, for Tabs D TEarth D 300K, it yields
0:95�g. The second term relates to the kinetic energies of the carriers that adds
to �C and to �V resp., while the third and last term reflects the light flux in
and vanishes for maximum solar light concentration ˝in D ˝out D 4�; it
becomes negative for any lower concentration ˝in < ˝out. For no concentration
of sunlight we get ˝in D �˝0 D 6:67 � 10�5 and ˝out D 4�; and finally
we arrive with �kTabs ln Œ˝out=˝in� D �0:382 eV. The numerical solution of
��F D ��F

�
�g; Tabs D 300K; TSun D 6;000K

�
is displayed in Fig. 4.23 for the

two extreme situations, sunlight without and with maximum concentration.

4.2.4 Carrier Extraction From an Illuminated
Electronic Band System

The extraction of charges from an illuminated band system causes a drop in the
internal excess densities, which in turn reduces the chemical potential 	np D
.�Fn � �Fp/ of the electron–hole ensemble. As the chemical potential 	np depends
logarithmically on the excess carrier concentration, the rate of the extracted excess
charges, say the current density depends exponentially on 	np. On the other hand,
the chemical potential of the electron–hole-ensemble representing the ‘work’ the
carriers are able to perform may be interpreted likewise as product of elementary
charge and voltage, e � V , establishing at ideal contacts of the system.
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Fig. 4.24 Fluxes of photons
and charges to and from a
volume element of an ideal
absorber in the radiative limit
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A convincingly easy derivation of the dependence of the electric output current
density (flux of charges) versus voltage of an ideal photovoltaic converter 24 is based
upon the balance of fluxes of photons and charges. We assume an input photon flux
from the Sun ��;in.TSun/, an output photon flux emitted from the photo excited band
system ��;out.Tabs; 	np/, and a charge flux (electric current density) �el.	np/. The
photon fluxes ��;in.TSun/, ��;out.Tabs; 	np/, of course, depend on the corresponding
solid angles for coupling light in and out,˝in, ˝out.

The flux balance of this radiative limit schematically displayed in Fig. 4.24 reads

��;in.TSun/ D ��;out.Tabs; 	np/C �el.	np/ (4.56)

In our approach the particle flux balance is met whereas the energy fluxes do not
balance since the solar photons are substantially ‘hotter’ than the photons emitted
from the absorber (TSun 	 Tabs).

We express the solar photon flux as thermal equilibrium radiation hitting the
absorber in the solid angle ˝in

25

��;in.TSun/ D
�

˝in

c204�
3„3

�Z 1

�g

.„!/2
exp



„!

kTSun

�
� 1

d .„!/ (4.57)

as well as the photons emitted by the absorber into the solid angle ˝out

��;out.Tabs; 	np/ D
�

˝out

c204�
3„3

�Z 1

�g

.„!/2
exp


„!�	np

kTabs

�
� 1

d .„!/ (4.58)

24Ideal here means that all solar photons arriving at the absorber are absorbed (no reflection of solar
light); absorption of one photon generates one electron–hole pair and vice versa for recombination
and light emission.
25Here we have again neglected the photon contribution from the environment/Universe.
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and the electric charge leaving the absorber

�el.	np/ D 1

e
j �

el .	np/ (4.59)

with j �
el .	np/ designating the electric output current density of the absorber and

elementary charge e D 1:6 � 10�19As.
After rearranging the relation of the flux balance we arrive at an explicit

relation for

�el.	np/ D
2

4
�

˝in
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3„3

�Z 1
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.„!/2
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5 (4.60)

The first term on the right side of this relation represents the solar light input and
is given with the adjustable solid angle ˝in and the parameter, optical band gap �g;
we abbreviate this term by A.˝in; �g/:

A D
�

˝in

c204�
3„3

�Z 1

�g

.„!/2
exp



„!

kTSun

�
� 1

d .„!/ :

The second term contains the only variable, the chemical potential 	np of the
electron–hole ensemble. With approximation of the Boltzmann-energy distribution
this term simplifies

�
˝out
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�Z 1
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.„!/2
exp


„!�	np
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(4.61)

to arrive at

j �
el .	np/ D e

�

A� B exp

�
	np

kTabs

�

� 1

	

: (4.62)
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Fig. 4.25 Current
density–voltage (j –V )
relation for illuminated and
non-illuminated ideal
electronic band system at
T D 300K

We keep in mind that B D B.�g/ and rewrite the upper equation and
approximate26

j �
el .	np/ D �e

�

B

�

exp

�
	np

kTabs

�

� 1

�

� .A � B/
	

� �e
�
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�
	np

kTabs

�

� 1

�

�A
	

: (4.63)

Commonly such band systems like all electronic devices are formally treated as
consuming elements with current input by convention defined positive. In order to
align to this description we finally write the input electric current density j.	np/

j.	np/ D �j �
el .	np/ D e

�

B

�

exp

�
	np

kTabs

�

� 1
�

� A

	

: (4.64)

The comparison of the latter equation with the well known current density-
voltage relation of an illuminated ideal diode, displayed in Fig. 4.25, which reads

j D j0

�

exp

�
eV

kT

�

� 1

	

� jphot (4.65)

shows the identity of both relations. Here, j0 and jphot are reverse saturation and
photo current density, resulting from the minority carriers in the dark (j0) and
from those under light (jphot). In our case the magnitude B represents the rate of
the radiative recombinations in the dark at vanishing 	np, being associated with
the thermal equilibrium density of the minority carriers, whereas A contains the
entire rate of transitions of the absorption under sunlight which equals the rate
of the extracted charges in short circuit operation (subscript sc), where the current
jsc D �jphot.

26We approximate �.A� B/ � �A since A 	 B .
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It is worthwhile noting that this relation for an illuminated ideal photovoltaic
converter has been derived on the basis of the balance of photons and electric
charges in an electronic band system without any ingredients of semiconductor
device physics.

The curved shape of the j–	np relation is exclusively determined by the
temperature of the absorber Tabs, implying that the resulting function is purely
governed by thermodynamic and statistical physics considerations.

Furthermore, by the ansatz that the current density jel is formulated in terms of
rates for absorption of photons/generation of electrons and holes, and of recombina-
tion rates, it has been implicitly assumed that the current instantaneously responds
to carrier generation and thus that excess carriers leave the system instantaneously,
which would require infinite mobilities or diffusion coefficients. The gradient in
chemical potential needed for charge transport under these conditions thus fades
away, and in consequence, for sufficient reverse bias, the slope dj=d	np ! 0.

4.2.5 Ideal Photovoltaic Converter

4.2.5.1 Electronic Design of an Ideal Photovoltaic Converter

An ideal photovoltaic converter meets the condition of exclusively radiative tran-
sitions of charges from the relevant excited state to the ground state. This is
called the radiative limit. In two-band systems, these processes are transitions
of electrons from the conduction band CB to the valence band VB, which are
equivalent to transitions of holes from the valence band into conduction band
states. The best option for photon receivers in this respect, at variance with doped
semiconductors, are intrinsic absorbers [15], which in the ideal case show zero
density of states between valence and conduction band27 (Fig. 4.26). These intrinsic
absorbers should be equipped with ‘entropy-free’ leads (called membranes) [15]
which simultaneously provide photoexcited excess electrons and holes moving in
opposite directions.

The idealized leads may be imagined as a high band gap n-type semiconductor
at the electron exit, perfectly aligning the edge of the conduction band and an
analogous p-type one at the hole exit, likewise aligning ideally the valence band
edge (Fig. 4.27). These leads are assumed to conduct the entire splitting of the
quasi-Fermi levels 	np D �Fn � �Fp to the outside, so that the difference in electrical
potential at the borders of the absorber, say the output voltage reads �Fn��Fp D e �V .

The ‘no-entrance’ condition may be realized by appropriately high barriers for
electrons ��C at the hole exit and for holes ��V the electron exit. Due to the

27Here we neglect the fact that, for thermodynamic reasons, any crystal at temperature T > 0 will
contain a certain amount of defects, such as point defects, dislocations, interstitial site occupation,
etc., not to mention unavoidable chemical impurities.
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Fig. 4.26 Band diagram of an intrinsic ideal electronic two-band absorber with schematically
displayed carrier concentrations in CB and VB in dark (left) and under illumination with
photogenerated carrier densities leading to splitting of quasi-Fermi levels �Fn � �Fp (right)

Fig. 4.27 Band diagram of illuminated two-band system with ideal leads for electron (left side)
and hole extraction (right side). The respective transfer to the leads and the according separation
of charges is provided by ideal membranes for electrons (at the level of the conduction band edge,
�C) and for holes (at the level of the valence band edge, �V) (the function of the membranes might
be imagined by appropriately doped high-band gap semiconductors (n-type on the left and p-type
on the right side)

resulting comparatively large band gap of the leads, photogeneration is negligible
and thus the leads form sinks for the corresponding excess carriers generated in the
absorber. Furthermore, the recombination in both sinks is assumed also exclusively
radiative, since we have not introduced any defects in these perfect leads.

For charge transport in the absorber, assumed ideally as well, we would need no
gradients in quasi-Fermi levels, whereas in reality for transport with scattering of
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carriers (and subsequent momentum and wave vector relaxation and corresponding
energy dissipation), a gradient in quasi-Fermi levels is required, whence the external
splitting of the quasi-Fermi levels detectable as an external voltage V is reduced
(schematically indicated by weak slopes of �Fn and �Fp in Fig. 4.27).

The idealized leads produce another set of beneficial effects on the excess carrier
densities, in particular, separating the absorption regime from unavoidable metal
contacts and thereby preventing the photogenerated charges from ‘feeling’ the
vanishing lifetime in the metal (intraband � 10�13 s), which commonly attracts
excess carriers for recombination and in turn causes the splitting of the absorber
quasi-Fermi level to suffer from surface recombination. On the other hand, in
the absorber and the leads also infinite carrier mobilities/diffusion coefficients are
assumed to rule out gradients of the quasi-Fermi levels commonly needed for charge
transport.

4.2.5.2 Output Power and Efficiency Limit of an Ideal Photovoltaic
Converter

The determination of the upper limit of the efficiency of a photovoltaic converter
published by Shockley and Queisser [16] and attempted in a somewhat simpler form
even earlier by Trivich and Flinn [17] relates the maximum of the electric output
power density

pel D 	np

e
j.	np/ D V � j.V / (4.66)

to the power of the solar light ��;Sun fed to the converter

��;Sun D ˝in

c204�
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.„!/3
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� „!
kTSun

�

� 1
d.„!/ :

Of course, the chemical potential 	np D 	np.j / as well as the electric output
current density j are dependent on the optical band gap �g of the absorber.

The electrical output current density j is nonlinearly related to the voltage
(V D 	np.j /=e/ as implicitly given in Sect. 4.2.4 particularly in Eq. (4.61), and
the electric output power in addition competes via 	np with the radiation emitted
by the absorber due to radiative recombination of excess carriers. The maximum
electric current density to be supplied by the absorber to the outside corresponds to
the entirely absorbed solar photon flux (abbreviated by term A.�g/) and elementary
charge e

jmax D e
˝in

c204�
3„3

Z 1

�g

.„!/2

exp

� „!
kTSun

�

� 1

d.„!/ :
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This maximum current density is associated with vanishing difference in chemical
potential, accordingly also with vanishing radiative recombination of excess carri-
ers,28 and in the language of the j � V -curve of the illuminated system is named
short-circuit current density

j.V D 0/ D jsc D �jphot:

We remember the ingredients we have made use of for this formal procedure:

• independent electron picture (no interaction between electrons),
• temperature of absorber is strongly coupled to a large and stable temperature

reservoir, here T D TEarth D 300K,
• stationary state, implying no transient effects, e.g., for ‘hot’ carrier extraction,
• complete absorption of photons with energy above band gap („! 
 �g),
• each absorbed photon generates an electron–hole pair that is separated appro-

priately and both, electron and hole contribute to the photocurrent with unit
probability (collection efficiency),

• depth profile of photogenerated charges is neglected (flat/homogeneous excess
density),

• the assumed ideal collection of photo generated electrons and holes requires
infinite mobility/infinite diffusion coefficient,

• ideal leads to the absorber (no influence of contacts to initiate recombination at
lead/contact interface),

and furthermore some simplifications of minor importance, such as

• pressure of photons (in terms of wave vectors) has not been included in the
balance,

• no red- or blueshift of photons escaping from the solar, or entering the terrestrial
gravitational field.

This upper limit for the efficiency of photovoltaic conversion (�, here named �SQ)
has been derived by Shockley and Queisser [16] in an equivalent approach like ours
above, on the basis of the detailed balance of flows of photons and charges.

Figure 4.28 depicts this efficiency �SQ versus the optical band gap for different
factors of sunlight concentration C D 1; C D 400; and C D Cmax D 1:88 � 105
(corresponding to ˝in D �˝0 D 6:67 � 10�5; 2:67 � 10�2; and 4� , while for the
emission we select ˝out D 4�) as derived from

�SQ D
	np.j /j0

�

exp

�
	np.j /

kTabs

�

� 1
	

˝in
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3„3

Z 1

�g

.„!/3

exp
„!

kTSun
� 1

d.„!/
: (4.67)

28In this mode of operation the absorber only emits thermal equilibrium radiation, as it is kept at
ambient temperature by an appropriate heat reservoir.
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Fig. 4.28 Theoretical efficiency for photovoltaic solar energy conversion with absorber kept at
T D 300K versus optical band gap for different levels of solar light concentration C . The solar
insolation here refers to AM0 spectral and total light flux. The reader should not be confused
when finding different maximum theoretical efficiency numbers. These are due to different spectral
and total light fluxes, such as the recently introduced artificial AM1.5 spectrum of the National
Renewable Energy Lab (NREL), a US governmental institution in Golden, CO

After replacing the reverse saturation current density j0 by the thermal equilibrium
photon flux of the absorber, viz.,

j0 D
�

˝out

c204�
3„3

�Z 1

�g

.„!/2 exp

�

� „!
kTabs

�

d .„!/

and introducing the implicitly expressed	np.j / (Sect. 4.2.4, Eq. (4.61)) one obtains
the numerical solution for

�SQ D �SQ
�
�g;˝in; Tabs

�
: (4.68)

This radiative limit with efficiency �SQ takes into account:

• the loss of photon excess energies „! > �g, which are transferred to the electron–
hole ensemble as a consequence of the extremely short relaxation times to be
deposited as heat in the lattice, from which it has to be removed instantaneously
to keep the absorber at environmental temperature (TEarth).

• the lack of energy of photons not absorbed with „! < �g.
• the considerable departure of the product of current and ‘voltage’ j �V , even at its

maximum (maximum power point), from maximum achievable V D Voc times
maximum achievable j D jsc due to the bending of the j–V curve resulting
from absorber temperatures T > 0.
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Fig. 4.29 Electric power density pel D jel
V (product of current density and voltage) as a function
of the band gap �g of an AM0-illuminated ideal photovoltaic converter at T D 300K. The envelope
curve gives the respective maxima of electric output power density for varying ‘voltages’ (	np),
while the ratio pel=pSun yields the efficiency �. The maximum theoretical efficiency of a single-
absorber structure at illumination with non-concentrated sunlight (AM0) is �max;AM0 D �.�g �
1:25 eV/ D 0:29

Figure 4.29 shows the electric output power density pel at T D 300K and under
AM0 insolation29 as a function of the band gap �g for varying output chemical
potentials	np D e�V ; the envelope of the individual curves represents the maximum
output power density. The division of the respective output power by the radiation
input power translates the number into the maximum achievable efficiency of a one-
absorber system in the radiative limit. In particular, for terrestrial conditions (300 K,
non-concentrated sunlight) and an absorber with a band gap �g � 1:25 eV one gets
�SQ;opt D 0:29.

4.2.5.3 Characteristic Magnitudes of the j –� Relation

The above j–V relation reveals three specific modes for operating a photovoltaic
converter running as a power generator, i.e., in the fourth quadrant of Fig. 4.25:

• at maximum (negative) output current density j.V D 0/ D jsc D �jphot (called
the short-circuit current density), where each of the photogenerated carriers is
extracted from the absorber ‘instantaneously’ after generation and the internal
carrier density consists solely of the thermal equilibrium concentration. In this
mode of operation, the electrical output power collapses and this short-circuit
current density jsc D �jphot varies linearly with the light flux ��;in � jsc.

29AM0 relates to non-concentrated sunlight at the Earth‘s position without the influence of the
atmosphere on the spectral distribution, such as photon energy dependent scattering, absorption,
and reflection.
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• at vanishing output current density, with V.j D 0/ D Voc (open-circuit condi-
tions), a situation in which each photogenerated carrier recombines radiatively in
the absorber, the output power disappears once again. The open-circuit voltage
derived from the j–V relation for vanishing output current density, viz.,

V.j D 0/ D Voc D .1=e/.kT/ ln

�
jphot

j0
C 1

	

;

for sufficient illumination, rises logarithmically with the light flux ��;in � jphot.
• at a particular j–V combination 0 < j < jsc or Voc > V > 0, the product
j � V becomes maximal.30 The according ratio of the maximum power output
pmpp D jmppVmpp and jscVoc is called the filling factor:

FF D jmppVmpp

jscVoc
:

Maximum power values might be estimated from the derivative of the jV
product via

pel D jV D
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� 1
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V ; (4.69)

with d .jV/ =dV D 0, we get

j0

�

exp

�
eV

kT

�

� 1
�

� jphot C j0
eV

kT
exp

�
eV

kT

�

DŠ 0 : (4.70)

Recalling that
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: (4.71)

30This mode of operation is called ‘maximum power point’ (mpp).
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Finally, we write V D Vopt for maximum power output and arrive at

eVopt

kT
C ln

�

1C eVopt

kT

	

D eVoc

kT
:

Instead of ln
�
1C eVopt=kT

�
, we approximate by the ‘worst case’ condition

ln

�

1C eVoc

kT

	


 ln

�

1C eVopt

kT

	

;

and obtain

Vopt 
 Voc � .1=e/ kT ln

�

1C eVoc

kT

	

: (4.72)

With common solar cells at T D 300K corresponding to k � 300K � 0:026 eV
and under AM0 illumination, one gets eVoc D .0:5 : : : 1/ eV and for the natural
logarithm lnŒ1C .20 : : : 40/� � 3, whence the maximum power point Vmpp reads

Vmpp D Vopt � Voc � .3kT /=e : (4.73)

4.2.5.4 Theoretical Efficiency Versus Light Flux

The electric power output of such an ideal configuration is based upon the product
of the current density j.V / and the voltage V . Indicating the maximum value of
this product with ‘maximum power point’ (the subscript mpp), this output power
reads p D 	mppjmpp=e. The link with the characteristic magnitudes of the open-
circuit voltage Voc and the short-circuit current density jsc is commonly provided
by another characteristic magnitude called the filling factor, defined above by which
quantifies how well the rectangle spanned by Vmpp and jmpp is filling out the j–V
curve with Voc and jsc (see the sketch in Fig. 4.30).

Fig. 4.30 Current
density–voltage curve of an
illuminated ideal photovoltaic
solar energy converter
showing characteristic
magnitudes like short-circuit
current density jsc,
open-circuit voltage Voc, and
maximum power point mpp.
The ratio pmax; el=jscVoc D
jmppVmpp=jscVoc D FF is
called the filling factor
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The output power versus the light flux ��;in rises stronger than linearly, since
jsc � ��;in and Voc � ln��;in, so that the efficiency also rises with light flux:

� � jmppVmpp

��;in
D jscVocFF

��;in
� ��;in ln

�
��;in

�
FF
�
��;in

�

��;in
� ln

�
��;in

�
FF
�
��;in

�
:

(4.74)

The dependence of the filling factor on the light flux ��;in of our ideal device can be
estimated from the above approximation

Vmpp � Voc � 3kT ; (4.75)

and the corresponding current density

jmpp D j0
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kT

�

� 1
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Substituting in Voc D kT ln
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and jphot D �jsc, we arrive at
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and hence,
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(4.78)

With the abbreviation jphot=j0 D 
 and approximating ln.
 C 1/ � ln 
, because
(e.g., for c-Si cells with �g D 1:1 eV) 
 
 5 � 108, we get

FF D �
�

1 � 3

ln Œ
�

��
1



.exp.ln Œ
� � 3/� 1/� 1

	

: (4.79)

Figure 4.31 exemplifies the dependence of the filling factor FF.
/ for a hypothetic
ideal 1- eV band-gap device with .jphot .AM0//=j0 � 5�108 whereas the correspond-
ing maximum achievable solar light concentration yields

jphot.1:88 � 105AM0/=j0 � 1014 :



82 4 Theoretical Limits for Solar Light Conversion

Fig. 4.31 Filling factor FF
versus light flux calculated
for an ideal two-band system
with band gap �g D 1:0 eV
and at T D 300K
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4.2.5.5 Temperature Dependence of the Chemical Potential
of Electron–Hole Ensembles

In the low-temperature limit T ! 0, the excited states for electrons D.�C/ and
for holes D.�V/ in thermal equilibrium are not occupied, so photogeneration of
carriers, e.g., even of a single electron in CB and a single hole in VB, will shift
the corresponding quasi-Fermi levels to the band edges �Fn ! �C and �Fp ! �V.
For the analytical treatment, we start with the relation for the chemical potential of
electrons and holes approximated with the Boltzmann energy distribution , writing

eVoc;max � 	np D 	n C 	p � kT ln

�
np

n0p0

	

D kT ln
h
.�nC n0/ .�p C p0/

i
� kT ln Œ.n0p0� :

For moderate temperatures, the thermal equilibrium densities n0 � �n and
p0 � �p, and we set

n0 D N0C exp


��C � �F

kT

�

and analogously
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��F � �V

kT

�
:

Accordingly, we get

	np � kT ln Œ�n�p� � kT ln
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Fig. 4.32 Normalized
current density–voltage
curves of an ideal
photovoltaic solar energy
converter for different
absorber temperatures. The
bending of the curves results
solely from the absorber
temperature T > 0
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and finally arrive at

	np .T ! 0/ � �kT

�� .�C � �F/

kT

�

� kT

�� .�F � �V/

kT

�

D .�C � �V/ D �g :

Figure 4.32 shows the temperature dependence by current density-voltage curves.
As eVoc approaches the band gap, the curves with decreasing temperature get
increasingly edge-like, with filling factor FF ! 1, i.e., the difference in quasi-Fermi
levels (�Fn � �Fp) corresponds to the energy gap.31

From a thermodynamic point of view, the lower the temperature of the absorber
(as low temperature ‘heat reservoir’) the higher the efficiency of conversion, or, the
more approaches the current density-voltage curve the rectangular shape and the
product jmpp � Vmpp ! jsc � Voc. On the other hand, for increasing departures from
T D 0, say for T > 0, the photoexcited electrons and holes have more and more to
compete with their thermally excited companions in order to generate a substantial
degree of thermal non-equilibrium state.

4.2.6 Optical Absorption in Band Systems

4.2.6.1 Initial to Final States Transitions

The optical absorption in two-band systems is based on electron transitions from
initial states indexed by i (in the valence band with density of states DV.�/) to final
states f (in the conduction band with DC.�/) (see Fig. 4.33) with respect to their
individual occupation. Hence, only for sufficiently low temperatures (T ! 0) and

31For T ! 0 and corresponding .�Fn � �Fp/ ! �g we have neglected inversion and the respective
transition to lasing; in addition we did not consider that doping by incorporation of impurities for
T ! 0 will not work.
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Fig. 4.33 Transition of electron from valence to conduction band by absorption of a photon having
energy „! > �g, with conservation of total energy and wave vector; the wave vector of photons
with energies of a few eV is negligible in comparison to lattice wave vectors in the first Brillouin
zone

negligible perturbation by light are the initial states completely occupied and the
final states completely unoccupied the probability for photon absorption and the
absorption coefficient are independent of the light flux (��;in) initiating transition
rates from initial to final states rif � ��;in.

The absorption coefficient ˛ defines the spatial decay of the photon flux
.�d��=dx/ commonly written as .�d˚=dx/ in many cases given by a linear relation
such that

� d˚ .x/

dx
D ˛˚.x/ ; (4.80)

which is known as the Lambert–Beer law. This local decay of the flux through an
area A along the length element dx yielding �d˚=dx arises from the transitions of
electrons from VB to CB in the volume element A � dx and within the time slot dt ,
which leads to the rate rif D �d˚=dx and finally to the equation

˛˚ D nipfAif˚ (4.81)

where ni, pf, Aif, and ˚ designate for electrons the densities of initial (i , occupied)
and final states (f , unoccupied), the transition coefficient, and the photon flux,
respectively.

Under any other conditions, such as increased temperature or under strong
photoexcitation of the system, the states in the energy bands CB and VB involved
in the transition are partially occupied or unoccupied, respectively. Accordingly, the
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rate of transitions due to photon absorption

rif D nipfAif˚ ; (4.82)

varies with the actual occupation of states.
We then have for the absorption coefficient of a two-band system ˛ given by

˛ D ni.˚/pf.˚/Aif : (4.83)

Introducing the individual carrier concentrations, i.e., ni for electrons in VB and pf
for holes in CB, we get

ni DnV DDVBfn .�/ DDVB

0

B
@1 � 1

exp

�Fp � �V

kT

�
C 1

1

C
AD DVB

exp


��Fp � �V

kT

�
C 1

;

(4.84)

together with

pf DpC DDCBfp .�/ D DCB

0

B
@1 � 1

exp

�C � �Fn

kT

�
C 1

1

C
AD DCB

exp


��C � �Fn

kT

�
C 1

:

(4.85)

We substitute these relations into the above equation to obtain ˛ as a function of the
occupation expressed by the quasi-Fermi energies of electrons and holes

˛ D AifDVBDCB

0

B
@

1

exp


��Fp � �V

kT

�
C 1

1

C
A

0

B
@

1

exp


��C � �Fn

kT

�
C 1

1

C
A :

(4.86)

If the quasi-Fermi levels in an ideal two-band system are sufficiently far away
from the respective band edges, i.e., .�C � �Fn/ 
 3kT and .�Fp � �V/ 
 3kT
(with �Fn � �Fp � �F the two exponential terms get extremely small) and we find
˛ D AifDVBDCB D const: However, for a significant departure from this situation
for sufficiently high photoexcitation or carrier injection, the densities of initial and
final states (ni and pf) may be significantly depleted (associated with the quasi-
Fermi levels approaching the band edges) with the consequence of a decrease of the
absorption rate. Figure 4.34 shows the influence of the depletion of the initial and
final states on the absorption rate in terms of occupation functions governed by the
separation of the quasi-Fermi levels with respect to the band gap energy.32

32In an ideal two-band system, the depletion of the initial state (electrons in the VB) corresponds
directly to the depletion of the final state (holes in CB).
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Fig. 4.34 Influence of depletion of initial (ni ) and final (pf ) state carrier concentrations on

absorption in terms of occupation function
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which enter the absorption coefficient ˛

It is obvious that, with increasing depletion not only the absorption rate drops
but likewise stimulated emission has to be considered in the entire balance of the
rates of absorption and emission. For .�Fn � �Fp/ 
 .�C � �V/, the formal condition
of ‘inversion’ is met which signals lasing behavior with the absorption coefficient
being no longer a meaningful magnitude.

4.2.6.2 Direct and Indirect Semiconductors

In crystals the translational periodic arrangement of ionic potentials leads to the
stationary state solution of the Schrödinger equation with the independent-electron
ansatz to relations between the electron energy � and electron wave vector k,
referred to as �.k/-diagrams (dispersion relation). The energetic regimes allowed
for the occupation by the electrons, called bands are separated from one another
by forbidden regimes, or band gaps. At low temperatures (T ! 0) the highest
energy completely occupied regime (valence band) is separated from the next higher
energies (conduction band) by the band gap �g. If the highest occupied band33 is only
partially ‘filled’ at T ! 0 by electrons, the crystal shows metallic behavior.

The local arrangement and the electronic details of the ionic potentials also deter-
mine whether, in the �.k/ relation of semiconductors or insulators, the maximum of
the valence band (VB) at energy � D �V and minimum of the conduction band (CB)
at energy � D �C are located at identical wave vectors in the Brillouin zone (direct
semiconductor) or at different k values separated by �k (indirect semiconductors),
as shown schematically in Fig. 4.35 for GaAs and c-Si respectively.

33In metals there are often several bands overlapping each other and crossing �F:
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Fig. 4.35 Energy–wave vector diagram � D �.k/ of a typical direct (GaAs) (left) and an indirect
semiconductor (c-Si) (right)

As a consequence, the transition of electrons from VB to CB by photoexcitation
with minimum photon energy „! D �g D �C � �V in an indirect semiconductor,
requires the participation of a lattice vibration (phonon) with a wave vector �k in
order to meet the condition of wave vector conservation, because the wave vectors
of photons in the visible spectral range are negligible compared to wave vectors on
the scale of the first Brillouin zone of crystals.34

The phonon is either generated by the incoming photon in optical interaction with
the lattice (optical phonon), or already available in the lattice (thermally generated)
and absorbed to meet momentum conservation. Of course, the phonon wave vector
is associated with the phonon energy via the particular dispersion relation „!phon.k/
of lattice vibrations. The participation of a third particle like a phonon for light
absorption, along with the photon and electron, makes the probability for absorption
substantially lower than that of a direct electronic transition from VB to CB.

34For a typical lattice constant of 0:3 nm, the first Brillouin zone spans from

� �

0:3 nm
� k � �

0:3 nm
;

whereas photon wave vectors, e.g., for „! D 2 eV, correspond to � � 600 nm and relate to wave
vectors

kphot;2 eV � 2�

600 nm
� 0:01.1=nm/ � k :
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4.2.6.3 Absorption in Direct Semiconductors

For direct optical transitions of electrons between valence and conduction band as a
consequence of photon absorption, as well as the process in the opposite direction
(CB to VB-transitions for light emission), momentum and energy conservation laws
in the independent-electron picture with negligible photon momentum kphot � 0

read:

ke; VB C kphot � ke; VB D kh; VB D ke; CB ; (4.87)

�phot D „! D �g C �kin; h C �kin; e : (4.88)

Assuming three-dimensional isotropic dispersion of electrons (CB) and holes (VB)
close to the band edges

�.k/ D „2k2
2m� ;

we rewrite energy conservation with regard of the wave vector balance kh; VB �
ke; CB D �k D 0 in the form

„! D �g C „2k2
2

�
1

m�
h

C 1

m�
e

�

D �g C „2k2
2m2

c

: (4.89)

The share of the kinetic energies of holes and electrons is expressed by the ratio of
the inverse effective masses35 which are combined to the reduced effective mass mc

as
�
1=m�

h C 1=m�
e

� D �
1=m�

c

�
.

In direct optical transitions from any of the states in the valence band with �i.k/
electrons by the interaction with a photon of „! are solely transferred to their
‘companion states’ in CB with identical wave vector (see Fig. 4.36).

The density of states in the parabolic band approximation (VB, CB) varies with
� p

� for energies of the band edge and deeper in the respective band,

DVB.�/ D .2mh/
3=2

2�2„3
p��;

DCB.�/ D .2me/
3=2

2�2„3
p
� � �g;

35Remember that the effective mass m� may be interpreted as an abbreviation for the density of
states in the parabolic band approximation. This abbreviation is usually applied for the density of
states in the valence DVB and in the conduction band DCB as well as for their combined density of
states Dc.
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Fig. 4.36 Transition of electron from valence to conduction band in a direct semiconductor by
absorption of a photon with energy „! > �g, with conservation of the electron wave vector
kel.VB/ D kel.CB/; remember that the wave vector of photons with energies of a few eV is
negligible in comparison to lattice wave vectors in the first Brillouin zone

and also likewise the combined density of states

Dc.�/ D .2mc/
3=2

2�2„3
p
� � �g:

The absorption coefficient comprises the transition coefficient Aif that couples
the electron wave function to the electromagnetic field, and the initial and final
density of states expressed in the combined density of states. Accordingly we get
the absorption coefficient of direct transitions (see Eq. (B.4)) as a function of the
energy of photons � D „!

˛.„!/ D Aif
.2mc/

3=2

2�2„3
q

„! � �g: (4.90)

For this derivation we have once more assumed the valence band to be entirely occu-
pied by electrons and the conduction band respectively to be entirely unoccupied.

The typical representation of the absorption coefficient ˛ of a direct transition
versus photon energy, as long as it remains in the vicinity of the band gap, is a plot



90 4 Theoretical Limits for Solar Light Conversion

Fig. 4.37 Representation of
absorption coefficient ˛.„!/
of a direct semiconductor in
terms of ˛2 versus photon
energy „! to show the linear
relation of ˛2 � �„! � �g

�

called the Tauc plot36 (see Fig. 4.37).

Œ˛.„!/�2 � „! � �g :

Due to the linear relation of ˛2 versus photon energy „!, the band gap is easily
identified as the intercept with the „!-axis.

4.2.6.4 Absorption in Indirect Semiconductors

As a consequence of the participation of a phonon to be either absorbed or
emitted/generated in indirect transitions, energy and momentum conservation laws
read

ke; VB C kphot � ke; VB D ke; CB ˙ kphon ; (4.91)

�phot D „! D �f � �i ˙ �phon ; (4.92)

with initial and final state energies �i and �f. We replace �f D �g C �kin; e, and ��i D
�kin; h and get

„! D �g C �kin; e C �kin; h ˙ �phon : (4.93)

36In amorphous and microcrystalline semiconductors, such as a-Ge:H, a-Si:H, 	c-Si etc., the
spectral absorption for low absorption coefficients is strongly governed by states in band tails and
at midgap. Due to the contribution of these states it is difficult to determine the pseudo-optical band
gap from experimental absorption coefficients ˛.„!/; a more appropriate evaluation of the pseudo-
band gap according to the proposal of Tauc [18] is derived when plotting ˛2 versus „! for direct, or
equivalently

p
˛ versus „! for indirect semiconductors; in these plots the linear extrapolation of

˛2, or
p
˛ respectively at sufficiently high photon energies resulting from band-to band transitions

yields consistent values for the pseudo-band gaps by the intercept with the photon-energy axis.
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Once again for three-dimensional isotropic bands in the independent-electron
picture we continue with the densities of states in the valence and conduction band

Ni D N .�i/ D
�
2m�

h

�3=2

2�2„3
p��i ; (4.94)

Nf D N .�f/ D
�
2m�

n

�3=2

2�2„3
p
�f � �g : (4.95)

and introduce the energy balance from above, to find for the final states

Nf D
�
2m�

n

�3=2

2�2„3
q

„! � �g C �i � �phon : (4.96)

Since we consider transitions from each of the available initial states to any final
state, irrespective of their accompanying wave vector k, where energy conservation
is met with the contribution of absorption or emission of a suitable phonon with
„!phon (see Fig. 4.38), we express the combined density of states D�

c by the
respective numbers of initial and final states NiNf D Nc, within the energy
interval d�i

D�
c D

Z
NiNfd�i D

Z
Ncd�i

D
�
2m�

n

�3=2 

2m�

p

�3=2

.2�„3/2
Z 0

�.„!��g��phon/

p
�i

q
„! C �i � �g � �phon d�i :

(4.97)
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Fig. 4.38 Transition of electron from valence to conduction band in an indirect semiconductor by
absorption of a photon having energy „! < �g, with conservation of total energy and wave vector
accompanied by phonon absorption (left) and with phonon generation („! > �g) (right). The wave
vector of photons with energies of a few eV is negligible in comparison to lattice wave vectors in
the first Brillouin zone; energies are not to scale, since �phon << �g
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Fig. 4.39 Representation of
absorption coefficient ˛.„!/
of an indirect semiconductor
in terms of

p
˛ versus photon

energy „! to show the linear
relation ofp
˛ � „! � .�g ˙ „!phon/
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The absorption coefficient ˛.„!/ of indirect transitions contains the probability
Pphon of generating or absorbing a phonon, an effect depending on the temper-
ature and quantified by the Bose–Einstein distribution function, and the phonon
dispersion relation ! D !.k/. Moreover ˛.„!/ includes the combined density of
states and the optical matrix element, which is assumed to be independent of photon
energy in the vicinity of „! � �g. Hence, finally,

˛.„!/ � Pphon

�
2m�

n

�3=2 

2m�

p

�3=2

.2�„3/2
�„! � �g ˙ �phon

�2
: (4.98)

Here, we distinguish between the probabilities Pphon; em and Pphon; abs for phonon
emission and absorption. An equivalent Tauc plot with

p
˛.„!/ � �„! � �g

�

is used for the visualization of indirect transitions, allowing for the experimental
determination of the band gap �g. A schematic example is displayed in Fig. 4.39.

4.2.7 Reversal of Photon and Carrier Fluxes

Absorption and emission of photons in and from matter are coupled by the excitation
of electrons and their radiative return to the ground state (see Sect. 4.2.3 and
Fig. 4.21). In the radiative limit a stationary state of an absorber is achieved by
balancing the rate of absorbed photons (rabs) by the rate of emitted photons, where
the emission is composed of spontaneous (rem;spon) and stimulated optical transitions
(rem;stim) and by the rate of carriers such as electrons and holes extracted from
the absorber (rel).37 For moderate absorption rates, such as those caused by solar

37The rate of carriers extracted from the absorber is composed of electrons and holes moving
in opposite directions and thus contribution by particular fractions to the entire electrical output
current.
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light fluxes, even when concentrated, the stimulated emission is negligible and the
balance of the rates becomes rabs � rem;spon C rel.

In a similar way, the removal of carriers from photoexcited absorber as electrical
current (photocurrent) can be reversed by inverting directions of fluxes, such as the
injection of carriers and the emission of photons by radiative transitions of carriers
in the excited state to the ground state. In this sense of reversal of fluxes (reciprocity
principle [19, 20]), solar cells and luminescence diodes are equivalent structures.

4.2.7.1 Reciprocity and Flux Balance for Photovoltaic Converters

In the radiative limit of photovoltaic structures, by definition, we find complete
reciprocity, since each of the absorbed photons is assumed to create one electron–
hole pair, and the generated charges are either extracted as output current with
probability (charge collection efficiency) unity, or will recombine radiatively in
spontaneous or stimulated transitions and thus create an appropriate number of
photons. Consequently, in any mode of operation, the balance of the fluxes of
photons ��; in and ��; out and of charges (electrical output current) �el is satisfied
(outlined exemplarily in Fig. 4.24):

��; in � ��; out D �el :

For incoming and emitted photons, we regard the fluxes in the according solid
angle, and we do not care about an eventual increase in etendue �" D "out � "in >

0, which is not necessarily conserved. Moreover, we accept that the incoming
photons usually possess much higher energy reflecting the temperature of the Sun’s
surface (6;000K) compared to those of ��; out.Tabs D 300K/. Without saying, the
radiative output ��; out contains the contributions of the photoexcited state dependent
on chemical potential 	np and temperature Tabs which includes, of course, the
contribution of the thermal radiation. The temperature Tabs is kept intentionally
constant by the contact to an external heat reservoir such as the global environment
(TEarth D 300K), and this is assumed to be independent of what the receiver does
with the absorbed solar photons (already mentioned in Sect. 3.3).

If the absorbed photons generate excitons, i.e., bound states between an electron
in CB and a hole in VB, instead of free carriers in the bands, we assume the excitons
to recombine and in turn contribute to the emitted photon flux, or be dissociated and
be extracted from the absorber as charges.

In the ideal open circuit mode (Voc) no carriers leave or enter the absorber, and
in the radiative limit the input photon flux is converted by exclusively radiative
recombination into an output photon flux. The absorber having established its
individual temperature Tabs due to contact to its environment is thus emitting due to
its chemical potential 	np; abs and its temperature Tabs, so that ��; in D ��; out In this
case, the emitted flux ��; out due to the non-vanishing chemical potential contains
the excess photons and the thermal equilibrium photons. (Remember that the entire
flux is formulated by Planck’s generalized law and we do not distinguish between
photons resulting from one or the other origin.)
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In short-circuit mode (jsc) of the radiative limit, each of the photons taking
the absorber out of thermal equilibrium is ‘converted’ into electron–hole pairs and
leaves the absorber as output current, so the balance can be expressed by ��; in D
�el C ��; 0, where the last term ��; 0 denotes the thermal equilibrium radiation.
In this ideal approach, the excess carriers generated in the absorber are extracted
instantaneously (with infinite diffusion coefficients and/or infinite mobilities) to the
boundaries of the absorber, so only the thermal equilibrium carrier density is present
in the band system.

In any mode 0 < V < Voc, equivalent to jsc > j > 0, the incoming photon
flux ��; in is balanced by the superposition of output photon and output carrier
flux, expressed by ��; in D �el C ��; out. Here the share of output of photons and
carriers obeys the j � V relation of the ideal diode (see Sect. 4.2.4) in which
the voltage represents the chemical potential appearing in the denominator of the
spectral photon flux equation (Sect. 4.2.3) e � V D 	np.

In the trivial case of a non-illuminated absorber kept at constant temperature
no photons are available for the excitation of the electron system, and accordingly
no extra photons exceeding thermal equilibrium radiation are emitted, and thus the
carrier output vanishes.38

In real solar cells, however, departures from reciprocity are unavoidable and are
due to

• incomplete conversion of absorbed photons into electron–hole pairs,
• incomplete radiative recombination, which means additional non-radiative decay

of the concentration of photoexcited carriers, and
• incomplete charge collection.

Consequently, the general flux balance is modified to ��; in > �el C ��; out.

4.2.7.2 Reciprocity and Flux Balance for Light Emitters

When operating the band system as light-emitting device equivalently to a lumines-
cence diode, the direction of fluxes, except that of the thermal equilibrium radiation,
is inverted.

In open-circuit, the input current density vanishes and the absorber radiates
in accordance with the chemical potential of its electron–hole system, which
corresponds to the splitting of the quasi-Fermi levels. To arrive at this state, we
switch on a current through the diode (�el < 0/ and establish the respective photon
field and splitting of the quasi-Fermi levels. Now, the diode emits with its chemical
potential of the electron system. We turn that radiation back to the diode by an
ideal mirror and the photon emission rate equals the absorption rate. Further on
we switch off the current supply and the diode illuminates itself in a way that

38Note, that the free energy of those thermal equilibrium photons with respect to a converter at
identical temperature disappears.
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satisfies reciprocity, such that the rates of emission and absorption are equal, i.e.,
��; out.„!/ D ��;2.„!/, even with identical spectral distributions and solid angles.
This operation resembles the open-circuit mode in solar cells, with the exception
that, in solar cells in the radiative limit, the solid angles (or etendues) are not
necessarily conserved.

In steady state short-circuit mode, by injection of carriers, the diode again creates
a photon field which illuminates the diode itself, while the further flux of charges
injected initiates the photons emitted to the environment according to the relation
��el D ��; out � ��; 0; note, that the thermal part ��; 0 is separately supplied by the
heat source which keeps the band system at constant temperature.

Operation at 0 � V � Voc and jsc 
 j 
 0 again reflects a mixture between both
states, for which the net output photon flux in accordance with the j–V curve of an
ideal illuminated diode, in which charge injection balances the photon emission
��el.V / D ��; out.V /� ��; 0.

4.2.8 Irreversibilities in Solar Light Conversion

The reception and the conversion of solar photons is associated with several
irreversible processes, by which the free energy either of photons or of the electron–
hole ensemble may substantially be reduced and thus the efficiency of conversion.
Amongst the usual imperfections of the absorbers, such as sites for additional non-
radiative recombination decreasing the life times of excited carriers, like defects or
interface and surface states, non-perfect barriers, limited carrier transport properties,
here, some more fundamental effects are summarized which are discussed in terms
of entropy generation and according drop of performance of solar light conversion.

4.2.8.1 Cooling of Solar Photons

We draft the generation of heat, as a fundamental irreversible process, by cooling
of solar photons in an ideal electronic band system exemplarily operated at open
circuit. The input into the system consists of the solar photon flux ��;Sun D ��;in, is
exactly balanced in open circuit by the output flux ��;abs D ��;out D ��;in when the
exchange of charges is forbidden. Neglecting light from the environment and from
the Universe the flux balance reads:

�Sun D ��; in D ˝in

c204�
3„3

Z 1

�g

.„!/2

exp

� „!
kTSun

�

� 1
d.„!/

D �abs D ��; out
˝out

c204�
3„3

Z 1

�g

.„!/2

exp

�„! � 	np

kTabs

�

� 1

d.„!/ : (4.99)
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While these photon fluxes are ideally balanced, the energy fluxes ��;Sun D ��;in,
��;abs D ��;in are not [21], since solar photons, corresponding to TSun D 6;000K,
on the average possess much higher energies than photons emitted by the absorber
at Tabs D 300K. Thus the energy fluxes in the inequality relation below read:

��; Sun D ��; in D ˝in

c204�
3„3

Z 1

�g

.„!/3

exp

� „!
kTSun

�

� 1

d.„!/

> .Š/��; absorber D ��; out D ˝out

c204�
3„3

Z 1

�g

.„!/3

exp

�„! � 	np

kTabs

�

� 1
d.„!/ :

(4.100)

The chemical potential 	np in the exponential function in the denominator of
the above balance compensates for the comparatively low Tabs. The photon fluxes
��;in, ��;out (having .„!/2 in the numerator of the integral) compensate each other,
whereas the energy fluxes ��;in, ��;out (with .„!/3 in the numerator) of course do
not balance. Thus, the energy flux from the Sun substantially exceed that emitted
from the electronic band system.

We treat the behavior of our band system in the radiative limit and in open
circuit (no carrier extraction or injection). Figure 4.40 (left) shows the absorbed
solar energy flux and the one emitted by the absorber in the radiative limit in open
circuit for various solar light concentration factors (˝out) as a function of the band
gap �g. This clearly confirms the absorbed energy per unit time from the Sun to be
much greater than the energy emitted by the absorber.

In Fig. 4.40 (right), the difference of these two energy fluxes (energy fluxes from
Sun minus those from the absorber in Fig. 4.40, (left)), which coincides with the
heat generation � Pq in the absorber by ‘cooling’ highly photo-excited electrons
and holes,39 is displayed as a function of the band gap and with the solar light
concentration factor as parameter. With increasing band gap, the difference gets
smaller, and in the limit of the band gap approaching infinity, it will vanish. This
effect of vanishing generation of heat and entropy, however, is not very helpful
because, when dealing with matter of zero absorptivity and emissivity, solar light
can neither be absorbed nor can radiation from this matter be emitted.

To achieve full reversibility in the process of harvesting solar photons, one would
need completely reversible individual processes. Since the complete conversion of
solar light into electric power with an absorber at T > 0K is not possible (see
Sect. 4.1.3), the only remaining option of full reversibility is open-circuit operation
with emission of photons with the same spectral shape as the incoming solar light,

39This heat � Pq (generated by fast relaxation of ‘hot’ photoexcited electrons and holes which
subsequently recombine with emission of photons with lower energy) may easily be translated
into an entropy density term by .1=Tabs/ Pq D Ps.
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Fig. 4.40 Radiative energy fluxes from the Sun ��;Sun to an electronic two-band absorber (AM0,
Tabs D 300K) and flux ��;abs from the receiver in the radiative limit in open-circuit voltage mode
versus optical threshold energy (band gap) for different levels of solar light concentration (left);
heat generation (��;Sun-��;abs) in an electronic two-band absorber at Tabs D 300K) in the radiative
limit in open-circuit voltage mode versus optical threshold energy (band gap) for different levels
of solar light concentration (right)

which means absorption in an ideal multispectral absorber being composed of an
infinite number of individual band gaps. In addition, the etendue of the incoming
solar photon flux must not be enlarged for the emission (solid angle for light in
and out to be identical). In essence, this hypothetical system is equivalent to an
ideal mirror at Tmirr D 0 which reflects each of the solar photons back to the Sun,
regardless of its respective energy/frequency, and takes no energy from the solar
radiation.

For the operation of an electronic band system at maximum power in the energy
flux balance, the amount of emitted light in comparison to 	np D e �Voc gets reduced
according to 	np � .e � Voc � 3kT/, but the entropy free amount of the electric
output power pel D .jmppVmpp/ substantially diminishes the rate of heat production.
In the mode of short circuit, incidentally, the radiative output is restricted to thermal
equilibrium radiation and to vanishing electric output power, so that the entire
radiative energy from the source is converted into heat.

4.2.8.2 Etendue of Solar Radiation Versus Etendu of Light Emission

The solar light flux is coupled in to an appropriate absorber under a particular
solid angle that determines the entire input of photons which in turn generate the
photoexcited state. The geometrical configuration of solid angles for light input and
light output determine the fraction of solar energy that is convertible. After the first
step of entropy generation upon solar light absorption (“cooling” of solar photons),
the emission of radiation by the absorber into a solid angle larger than the solid
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angle of the light input represents a further reduction of the conversion of solar
light (remember the dependence of the maximum achievable open circuit voltage
on the ratio of the solid angles .˝out=˝in/ in Eq. (4.55)). Furthermore, the random
emission into a larger solid angle than that of the light input by light scattering
in the absorber or at its rough surface, which cannot be reversed by “passive”
optical elements, increases the entropy of the photons as well, even when elastically
scattered.40

For the formulation of the entropy production as a function of light fluxes, studied
quantitatively by Markvart [21], the chemical potential of the photon field	abs.„!0/
of a small spectral part „!0 emitted in the radiative limit from an absorber at Tabs and
illuminated by the Sun explicitly contains, amongst other terms, the contribution for
the etendue of the photon fluxes in "Sun and out "abs in the third term of the equation
below (which is identical to Eq. (4.55), when replacing „!0 by �g and interpreting
�.T / as mean kinetic energy of the particular photo-excited species):

	abs .„!0/ D
�

1 � Tabs

TSun

�

„!0 C kTabs ln

�
� .TSun/

� .Tabs/

	

� kTabs ln

�
"abs

"Sun

	

:

(4.101)

As the etendue in the best case (for reversible effects) is conserved and in irreversible
steps always increases, the chemical potential of the photon field of the absorber
decreases if the absorber increases the incoming etendue: "in < "out.

4.2.8.3 Entropy Production by Diffusion of Photoexcited Species
in Absorbers

According to the Lambert–Beer law, the carrier generation profile g.z/ exhibits an
exponential decay along the absorption path z, of the form g.z/ � exp .�˛z/, where
˛ denotes the optical absorption coefficient, which might include the increase in
absorption by scattering at rough surfaces, i.e., ˛ � .2n/2 [22]. Due to diffusion, the
exponential-like photoexcitation profile will smear out across the absorber thickness
d and establish a flatter profile. For a quantitative estimate of this effect we compare

40The directional dispersion of light is commonly treated by the difference in the etendue of
the propagating light before and after the interaction with matter. The etendue " describes the
“radiance” of the light beam, which is conserved in non-scattering, non-absorbing media, where

•" D n2 cos �•˝•A;

with angle � to the normal to the area element •A, solid angle for emission •˝, and refractive
index n of the matter [16]. By scattering of photons and/or by absorption and subsequent emission
with Stokes shift into a larger solid angle than that of the incoming photon flux, due to the lower
photon flux density of the ‘bundle’ of rays in the ‘beam’, the ability of the photon gas to perform
valuable work is reduced. In the language of statistical physics, it is the increase in etendue that
reduces the free energy of the photons.
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Fig. 4.41 Profile of photogenerated excess carriers according to the profile of photogeneration
nex.z/ (left) and hypothetic completely flat excess carrier distribution Nn D const: (right)

a profile of excess carriers (e.g., electrons as minority carriers) according to the
generation profile41

n1 D n.z/ D �0˛ exp.�˛z/

with an entirely flat profile

n2 D n D const:

which for negligible surface recombination at the rear and front and for density-
independent lifetime  in a hypothetically assumed extreme case would establish
(see Fig. 4.41).

The average constant profile n is obtained by

n D 1

d

Z d

0

g.z/dz D 1

d

Z d

0

�0˛ exp .�˛z/ dz D �0

d

�
1 � exp .�˛d/ � :

(4.102)

The chemical potential of these electrons with densities n in the approximation of
the Boltzmann energy distribution is given by

	n D kT ln

�
�nC n0

n0

	

; (4.103)

where �n.z/ might be a function of the spatial coordinate z rendering the chemical
potential 	 D 	.z/ dependent on z as well. For sufficient departure of �n from

41For the sake of simplicity we use a flat profile and assume moreover negligible surface
recombination at the rear and front as well as density-independent carrier lifetimes  .



100 4 Theoretical Limits for Solar Light Conversion

thermal equilibrium densities n0, i.e., �n 	 n0 or �n C n0 � �n, we may
approximate by

	n � kT ln

�
�n

n0

	

: (4.104)

We write the density of excess carriers according to the generation profile (1)
assuming the carriers do not move due to gradients in concentration and as well
as the density of a hypothetic completely flat excess carrier profile (2), and we get
the corresponding local chemical potentials of the electrons 	n;1 and 	n;2

	n;1.z/ D kT ln

�
�n

n0

	

D kT ln
�
�0˛ exp .�˛z/

� � kT ln n0 ; (4.105)

or equivalently,

	n;1.z/ D kT ln Œ�0˛� � kT˛z � kT ln Œn0� ; (4.106)

and analogously, for the spatially constant excess density, we write

	n;2 D kT ln

�
�0

d

�
1 � exp .�˛d/ �

	

� kT ln Œn0�

D kT ln

�
�0

d

	

C kT ln
�
1 � exp .�˛d/ � � kT ln Œn0� : (4.107)

The difference in the chemical potential of the two situations thus becomes

	n;1.z/� 	n;2 D �	.z/ D kT

�

ln Œ�0˛� � ˛z � ln Œn0� � ln

�
�0

d

	

� ln
�
1 � exp .�˛d/ �C ln Œn0�



;

(4.108)

and we arrive at

�	.z/ D kT

�

ln

�
�0˛

�0=d

	

� ˛z � ln
�
1 � exp .�˛d/ �



: (4.109)

Finally, we may write

�	.z/ D kT ln

�
˛d exp .�˛z/

1 � exp.�˛d/
	

: (4.110)
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Integrating�	.z/ across the length d and normalizing with respect to d yields the
difference in chemical potential per unit length:

�	tot

d
D kT

d

Z d

0

ln

�
˛d exp.�˛z/

1 � exp.�˛d/
	

dz

D kT

d

Z d

0

n
ln Œ˛d � � ˛z � ln

�
1 � exp .�˛d/ �

o
dz

D kT

d

n
d ln Œ˛d � � ˛

2
d2 � d ln

�
1 � exp .�˛d/ �

o

D kT
n
ln Œ˛d � � ˛

2
d � ln

�
1 � exp .�˛d/ �

o
: (4.111)

A detailed inspection of the above relation shows that the chemical potential 	n;1 of
the system in the initial state, with excess carrier distribution having an exponential
spatial decay, is greater than after relaxation to a flat excess carrier profile with
(	n;2). Consequently, the entropy difference between the initial state and the final
state, viz.,

�s

d
D 1

T

�	tot

d
;

is negative.42 Conversely, the entropy is increased by smearing-out a carrier profile:

1

d
.s2 � s1/ D �s1!2 D k

�

� ln Œ˛d �C 1

2
˛d C ln

�
1 � exp.�˛d/�



> 0 :

(4.112)

Figure 4.42 shows schematically the entropy increase upon smearing out a carrier
profile versus absorption coefficient times absorption length ˛d .

42Starting from the fundamental relation of thermodynamics

dU D T dS � pdV C 	idNi ;

where U , T , S , p, V , 	, N are the internal energy, temperature, entropy, pressure, volume,
chemical potential of a particular species, and number Ni D Ni.z/, for spatial rearrangement
of particles with no change in total internal energy dU D 0, constant temperature T D constant,
no volume change dV D 0, and solely an exchange of the chemical potential of particles/species
at particular locations, we get in essence

dS D 1

T
.dU C pdV � 	idNi / D �	i

T
dNi :



102 4 Theoretical Limits for Solar Light Conversion

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

d

en
tro

py
ge

ne
ra

tio
n

s
d

ar
b.

un
.

0 2 4 6 8 10
10

8

6

4

2

0

2

d

Lo
g

en
tro

py
ge

n.
s

d
ar

b.
un

.

. .

Fig. 4.42 Qualitative entropy production with smearing-out the original carrier generation profile
(as sketched in Fig. 4.40) in linear (left) and log representation (right) versus absorption coefficient
times absorber thickness

4.2.8.4 Entropy Production of an Ideal Solar Cell in Different
Modes of Operation

The three characteristic modes for the operation of an ideal solar cell, are examined
with respect to entropy production. We simplify the problem and avoid the dis-
cussion of the photon cooling effect by—in our gedankenexperiment—illumination
of the ideal band system with photons of a source like a thermal equilibrium
radiator (Tsource), with a spectral distribution identical with that the absorber emits
(Tabs D Tsource); the total flux from the source to the band system is, of course,
much higher than the thermal-equilibrium radiation of the system to provide for a
substantial departure of it from thermal equilibrium.43

• In open circuit mode remember that there is no electric power delivered to out-
side) the band system emits photons of the same ‘quality’ (spectral distribution)
and of the same amount as it gets from the source; we even may think of identical
solid angles for light in and light out and consequently the entropy generation
term in this particular case vanishes ( PSoc D 0).

• The situation in maximum power point can be extrapolated from the Voc-mode:
the output radiation is reduced by a factor of about exp .3/ � 20 (due to the
decrease of the chemical potential from 	np;oc D eVoc to 	np;mpp D eVoc �
3kT).44 The electric output power density (pel D Vmpp�jmpp) is free of entropy and
the difference in carrier flux jsc�jmpp is considered in the reduction of the photon
flux according to 	mpp. The difference of chemical potentials 	np;oc � 	np;mpp

43Since the electron system of the absorber has no memory, how the excitation to the excess carrier
concentration has been performed, the excitation state also could have been established by the very
same photon flux for „! � �g from the Sun.
44We approximate the radiation out
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that excited carriers have to endure results from the fact that the j � V -curve
is bending for T > 0 or, in other words that the access to excited carriers is
limited by the presence of thermally excited ones (the photoexcited carriers have
to compete with the thermally excited ones; similarly to the situation in an ideal
gas where there is only limited access to the internal energy of species in terms
of F D U � TS).

• In the ideal short-circuit mode (sc) we are not able to extract electrical power
from the device and each of the photogenerated carriers escapes instanta-
neously from the absorber (recall that we are here assuming infinite mobil-
ity/diffusion coefficients, as explained in Sect. 4.2.5). Consequently only the
thermal-equilibrium carrier densities are present, whence the absorber only emits
thermal equilibrium radiation. In this situation the entire solar radiation input is
converted into heat at Tabs.

4.2.9 Gradients in Quasi-Fermi Levels for Charge Transport

Amongst the asymmetric behavior implemented into solar light absorbers by
junctions or by particular contacts, the separation of charges is governed by specific
features for their transport:

The motion of charge carriers, is generally described in the quasi-classical
approach by the Boltzmann transport equation (see Appendix F). Particularly
in semiconductors the generalized driving force for the carrier motion under
small perturbation can be derived on the basis of their spatial distribution, here

˝out

c204�
3„3

Z
1

�g

.„!/3
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�„! � 	

kTabs

�

� 1

d.„!/

by
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c204�
3„3

Z
1

�g

.„!/3 exp

�„! � 	

kTabs

�

d.„!/

and get the fraction

.��;out.oc//=.��;out.mpp// D
R

1

�g
.„!/3 exp

�
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�

d.„!/
R

1

�g
.„!/3 exp

�

�„! � .	oc � 3kT abs/

kTabs

�

d.„!/
;

which simplifies to

exp

�
	oc

kTabs

�

= exp

�
.	oc � 3kTabs/

kTabs

�

D exp

�
3kT abs

kTabs

�

D exp .3/ :
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formulated for “free” electrons with local concentration n.x/; the “free” electrons in
semiconductors allowing for transport are those in the conduction band where their
transport level is close to the band edge � D �C . The electron density, assumed to
be only weakly varying in space,45 writes

n.x/ D NCfFermi; el D NC
1

exp

�
�C.x/ � �Fn.x/

kT.x/

�

C 1

: (4.113)

The relevant magnitudes �C.x/, �Fn.x/, and T .x/ are spatially dependent; NC

designates the effective density of states in the conduction band. In the particular
case of thermal equilibrium, the quasi-Fermi level for electrons approaches �Fn D
�F. For holes, the equivalent description introduces their transport energy, the
valence band edge EV, the distribution function fFermi; hole, and the effective density
of states:

p.x/ D NVfFermi; hole D NV
1

exp

�
�Fp.x/� �V.x/

kT.x/

�

C 1

: (4.114)

Forming the spatial derivatives of the above equation for the electron part, we obtain

1

NC
rx
�
n.x/

�
(4.115)

D
�
1

kT

� exp

�C � �Fn

kT

�



exp


�C � �Fn

kT

�
C 1

�2

n
rx
�
�C.x/

� � rx
�
�Fn.x/

�C

�C � �F

T

�
rx ŒT .x/�

o
:

Introducing the abbreviation

ˇ� D
exp


�C � �Fn

kT

�

exp

�C � �Fn

kT

�
C 1

;

45Only a weak dependence of �C.x/, �Fn.x/, and T .x/ is assumed, justifying the idea that only the
gradients are spatial functions, while the temperature dependence of the effective density NC of
electrons in the conduction band is also neglected (NC D constant).
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we get the gradient of the quasi-Fermi level of the electrons that contains each of
the quantities contributing to electron transport

rx
�
�Fn.x/

� D rx
�
�C.x/

� � kT

NC



exp


�C � �Fn

kT

�
C1
� 1

ˇ� rx
�
n.x/

�
(4.116)

C

�C � �Fn

T

�
rx
�
T .x/

�
:

Recognizing that

1

NC

�

exp

�
�C.x/� �.x/

kT.x/

�

C 1

	

D 1

n.x/
;

one arrives at

rx
�
�Fn.x/

� D rx
�
�C.x/

��kT
1

n.x/

exp

�C � �Fn

kT

�

exp

�C � �Fn

kT

�
C 1

rx
�
n.x/

�
(4.117)

C

�C � �Fn

T

�
rx
�
T .x/

�
:

A detailed inspection of the factor ˇ� reveals its almost constant behavior ˇ� ! 1

for sufficiently large difference �C � �Fn 
 3kT, shown in Fig. 4.43 as a function of
.�Fn=�C/ for different values of kT with kT � �C. This treatment leads to a result
similar to the approximation by the Boltzmann-energy distribution of the above
relation for n.x/.

Furthermore we may extend the gradients towards fluxes in particular for the
electron contribution to the electrical current density by multiplication of left- and
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Fig. 4.43 ˇ�-Function which modifies (only marginally) the Fermi–Dirac distribution function in
the transport approach, justifying the approximation ˇ� � 1 in 0 � �Fn � �C, (kT D 26meV;
�C D 1 eV, �V D 0 eV)
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right-hand sides of the relation above with the electron mobility46 	�
n and by the

concentration n.x/ to get

	�
nn.x/rx

�
�Fn.x/

� D 	�
nn.x/rx

�
�C.x/

� � 	�
nn.x/

kT

ˇ�n.x/
rx
�
n.x/

�

C	�
nn.x/


�C � �Fn

T

�
rx
�
T .x/

�
: (4.118)

Substituting the gradient of the conduction band level �C by the electric field

rx.�C/ D rx
� � e'.x/� D eE.x/

in the first term, and setting ˇ� � 1 as well as replacing the mobility 	�
n by the

diffusion coefficientDn via the Einstein relation

	� D e

kT
D

in the second term, the above equation evidently reads as a contribution of electrons
to the electric current density jn.x/:

	�
nn.x/rx

�
�Fn.x/

� D e	�
nn.x/E.x/�eDnrx

�
n.x/

�
(4.119)

C	�
nn.x/


�C � �Fn

T

�
rx

�
T .x/

�D jn.x/ ;

where the first term represents carrier drift, the second describes carrier diffusion,
and the last term details the contribution due to a thermal gradient that in turn leads
to thermal conduction and to thermoelectric effects. Evidently, for a comprehensive
and consistent formulation of the current in photovoltaic cells we only need to regard
the gradient in the quasi-Fermi energy of the respective carriers.
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Chapter 5
Real Photovoltaic Converters

Real photovoltaic converters (solar cells), consisting of molecular, liquid, or solid
state structures of various types, exhibit particular departures from the ideal
converter presented in Chap. 4. These departures concern for example:

• Incomplete absorption of solar photons with energies above the optical threshold
energy.

• Considerable rates of non-radiative transitions from excited states to the ground
states, commonly introduced by defects, dopants, impurities, surface states, and
interface states.

• Limitations of transport of charge carriers or excitonic compounds that move the
photoexcited states to the boundaries of the absorber and connect them to leads
to the outside.

A prominent set of such converters is presented here and discussed in terms of the
parameters and effects explained in Sect. 4 and hence recognized as relevant for the
function of solar light conversion.

The majority of today’s solar cells are made up of inorganic matter, explic-
itly semiconductors, with various optical band gaps and electronic properties,
such as densities of states, type of optical transitions (direct/indirect), absorp-
tion coefficients, type of doping, and carrier mobilities. These properties can be
moderately well understood qualitatively in terms of stationary state solutions
of the Schrödinger equation in an infinitely extended three-dimensional periodic
potential, applying the independent-electron picture. For inorganic absorbers, the
currently important types of barrier structures are discussed in detail in Sects. 5.1–
5.4. This allows the formulation of the state of electrons and their counterpart, the
holes, in thermal equilibrium and under photoexcitation under certain conditions of
sufficiently fast intraband relaxation on the basis of Fermi statistics.

The excitation of molecular species, such as organic absorbers and dye molecules
in several matrices, equipped again with majority-carrier barriers, are then exam-
ined.
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5.1 Homogeneous pn-Junctions

One of the conceptually simplest device options for photovoltaic cells is a homoge-
neous semiconductor pn-junction (homogeneous pn-diode). The junction between
p- and n-type doped region creates an asymmetry for the transport of differently
charged carriers, such as electrons and holes and thus provides source and sink for
the relevant excess species. The source of photoexcited electrons is the p-doped
region where the electrons are minority carriers, and their sink is the n-doped
layer where they adopt majority carrier behavior. The photoexcited holes originate
analogously as minority carriers from the n-doped region, while their sink is
the p-type regime. The concentrations of photoexcited majority carriers, holes in
the p-doped region and electrons in the n-doped region, even at maximum solar
light concentration, are extremely low in comparison with the respective thermal
equilibrium concentrations and do not contribute significantly to the resulting
photocurrents.

As the treatment of other types of junctions is conceptually identical to that of a
homogeneous barrier, we explain how they work and derive the relevant equations
here in some detail (see also textbooks on semiconductor physics such as [1–4]).

5.1.1 Space-Charge Region

The combination of two differently doped regimes of one type of semiconductor
leads at their interface to a diffusion of electrons and holes which establishes a
regime of depleted majority carriers, with a deficit of electrons at the n-side and
of holes at the p-side. A space-charge regime �.x/ thus forms, originating from
the locally arrested negatively charged acceptor ions (n�

A) in the p-regime and the
positively charged donor ions (nC

D ) in the n-regime (see Fig. 5.1).1

The twofold (indefinite) spatial integration of this space charge �.x/ results in a
spatially dependent electrostatic potential

'.x/ D ""0

Z �Z
�.x/dx

�

dx ;

which is translated into the electron energy �electron.x/ D e'.x/ by multiplication
with the electron charge �e D �1:6 � 10�19 A s.

The spatially dependent function �electron.x/ � '.x/ modifies the electron (and
hole) energy levels in the neighborhood of the space-charge region which separates
the two differently doped parts of the pn-configuration. Hence, the vacuum level

1For infinite p- and n-type doped layers, it is assumed that the finite number of electrons and holes
having moved across the junction are distributed within the infinite layer lengths without increasing
the overall initial thermal-equilibrium majority carrier concentrations.



5.1 Homogeneous pn-Junctions 111

Fig. 5.1 Formation of
space-charge region (SCR) in
a homogeneous pn-junction
by exchange of electrons and
holes across the interface.
The transition from the local
space-charge �.x/ to the local
electron energy level
distribution �.x/ is
established qualitatively
derived by applying Poisson’s
equation

p-type n-type

x

(x)

(x)dx

x

(x)dx) dx ~ (x)

x

e (x)= electron

x

�vac, the edge of the conduction band �C, and the edge of the valence band �V become
spatially dependent, and this local behavior enters into the band diagram of the
junction as an energy barrier for transport of the majority carriers (see Figs. 5.1
and 5.2).2

An analytical formulation of this space-charge effect and its consequences on
electronic levels by assuming an abrupt spatial regime of positively and negatively
charged dopants is displayed in Fig. 5.3.

For the sake of algebraic simplicity, we calculate the electrostatic potential '.x/
with help of Poisson’s equation in a one-dimensional representation, for the abrupt
space-charge region (Fig. 5.3):

d2'.x/

dx2
D � e

"0"

�
n�

A.x/ � nC
D .x/

�
: (5.1)

For these p-type (�xp � x � 0) and n-type (0 � x � xn) doped regimes, we get
the corresponding derivative .d'.x/=dx/ of the electrostatic potential and the poten-
tial '.x/ itself. In the above relation, e, "0, ", n�

A , and nC
D denote elementary charge,

2Each of the core levels of the atoms in the p- and n-type doped regimes are spatially modulated
by this potential function '.x/.



112 5 Real Photovoltaic Converters

Fig. 5.2 Schematic band
diagram of a homogeneous
pn-junction in thermal
equilibrium with zero applied
voltage (Fermi level �F is
horizontal) with majority
carriers (electrons in the
n-type and holes in the
p-type doped regimes) and
minority charges (electrons in
the p-type and holes in the
n-type doped regimes). Also
in the space-charge regime,
carrier concentrations n.x/
and p.x/ are determined by
Fermi statistics

CB

V

p-type n-type

vac

vac

VB

x
F

g C

x=0

C

V

Fig. 5.3 Space-charge region
of an abrupt pn-junction and
qualitative electron energy
level, e.g., conduction band.
This approach allows for an
easy analytical treatment of
the junction properties

p-type n-type

(x)

nA
-

nD
+

-xp

electron

x

xn x

vacuum dielectric constant, dielectric susceptibility of the particular semiconductor,
density of negatively charged acceptors, and density of positively charged donors.
Moreover, we assume completely ionized acceptor and donor states, which means
that each of the incorporated impurities, acceptors NA and donors ND, contribute
to the space charge: n�

A D NA, and nC
D D ND (the individual magnitudes in the

respective regions are indexed by p and n).
For relatively low temperatures in the neighborhood of T D 300K and below,

the Fermi distribution can be approximated by a step function. The bending of the
bands, e.g., the ‘upward’ bending of �C and of the donor level �D in the n-regime
close to the interface crosses the Fermi level �F, and for �D > �F, the energy level of
the donor is to a good approximation unoccupied, with donor state nC

D . The acceptor
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impurities for the downward bending of �V and of the acceptor level �A are occupied
by electrons since �A < �F, and accordingly the acceptor states are n�

A .
For these parts of p- and n-regions we thus get with integration constants C and

C 0 by applying Poisson’s equation:

�d2'.x/

dx2
D e

"0"

� �NA
�
; (5.2)

�d'.x/

dx
D � e

"0"
NAx C C ; (5.3)

�d2'.x/

dx2
D e

"0"
ND ; (5.4)

�d'.x/

dx
D e

"0"
NDx C C 0 : (5.5)

Left- and right-hand side boundary conditions are

d'.x D �xp/

dx
D 0 D d'.x D xn/

dx
(5.6)

and

"p-side
d'.x D 0/

dx
D "n-side

d'.x D 0/

dx
: (5.7)

In a homogeneous junction, where the dielectric susceptibilities are identical on the
left- and right-hand sides, i.e., "p-side D "n-side D ", we get for the p-side

d'.x/

dx
D � e

"0"
NA.x C xp/ ; (5.8)

and for the n-side

d'.x/

dx
D e

"0"
ND.x � xn/ : (5.9)

At x D 0, the requirement of continuous normal components of the dielectric
displacement, viz., "p-sideEnormal,p-side D "n-sideEnormal,n-side, implies that

d'.x D 0/

dx
D � e

"0"
NAxp D � e

"0"
NDxn : (5.10)

The equality NAxp D NDxn announces charge neutrality for the entire width of the
pn-junction, across �xp � x � xn.
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A further spatial integration leads to the electrostatic potential '.x/. With 'p.x/

for the p-side and 'n.x/ for the n-side, we thus have, for �xp � x � 0,

'p D V.x/ D �
Z �e
"0"

NA.x C xp/dx D e

"0"
NA

�
x2

2
C xpx

�

C C1 ; (5.11)

and for 0 � x � xn,

'n D '.x/ D �
Z �e
"0"

ND.x � xn/dx D � e

"0"
ND

�
x2

2
� xnx

�

C C2 : (5.12)

The boundary conditions introduce 'p.x D 0/ D 'n.x D 0/, resulting in C1 D C2,
and arbitrarily selected 'p.�xp/ D 0 and 'n.xn/ D Vbi, called the built-in potential.
We finally obtain

'p.x/ D e

2"0"
NA.x C xp/

2 (5.13)

and

'n.x/ D e

2"0"
ND

�

�x2 C 2xxn C NA

ND
x2p

�

: (5.14)

We thus arrive at the built-in potential

Vbi D 'n.xn/ D e

2"0"



NAx

2
p CNDx

2
n

�
: (5.15)

From this built-in potential and with the condition of charge neutrality NAxp D
NDxn, we calculate the total width w D xn C xp of this regime in which charge
neutrality is violated, and which is thus referred to as the space-charge region (SCR):

w D xn C xp D
s
2"0"Vbi

eNAND
.NA CND/ D

s
2"0"Vbi

e

�
1

NA
C 1

ND

�

: (5.16)

The built-in potential Vbi represents the energy shift in thermal equilibrium between
the vacuum level of p-doped and n-doped regimes, far away from the junction. In a
homogeneous junction wherep- and n-type layers consist of the same basic material
differing solely in the type of doping, Vbi can be determined by the optical band gap
�g and the energy differences of the Fermi levels from the majority band edges, e.g.,
�F � �V,p-side and �C,n-side � �F. We therefore obtain

eVbi D �g � �
�F � �V,p-side

� � .�C,n-side � �F/ : (5.17)
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Of course, in the two equations above, the expressions for Vbi are consistent with
one another since the dopant concentrations NA and ND govern the position of the
respective Fermi levels.

Furthermore, we see that the higher the concentrations NA and ND of dopants,
the smaller the width of the corresponding space-charge region at the p- and n-sides,
together with their sum. This width is necessary to establish the appropriate amount
of charges at the junction, resulting from the ‘reaction’ of the majority carriers on
each side, to reach chemical equilibrium.

An exemplary estimate of the spatial extension of the space-charge width in
crystalline silicon, with medium dopand concentrations representative of typical
electronic or optoelectronic devices, viz., NA D ND D 1016 cm�3, dielectric
susceptibility "Si D 12, and Vbi D 1:0V, yields w � 0:5 �m. This is considerably
smaller than the common thickness of c-Si wafers3 of about dc-Si D 200–400�m.

Here we have to recognize that, in the space-charge region, the potential has a
non-vanishing gradient r'.x/ ¤ 0, accompanied by r�C.x/ ¤ 0 and r�V.x/ ¤ 0,
which is often called an electric field. However, these gradients definitely do not
induce carriers to move ‘downhill’. For this reason, we refrain from referring to
these gradients as electric fields and rather keep the original expression of gradients
of the electrostatic potential rx'.x/, or gradients of the conduction or valence band
energy.4

5.1.2 Current Density–Voltage Relation of a Homogeneous
pn-Diode

An externally applied voltage Vext at a non-illuminated pn-junction leads to a
perturbation of the thermal equilibrium and thus to a departure from Vext D 0 and
j D 0, a condition that allows for a non-vanishing current density j.Vext ¤ 0/ ¤ 0.

In the idealized formulation of the current density, we assume:

• Carrier transport from the contacts to the junction requires negligible voltage
drops, which means negligible rx�Fn Ð rx�C for electrons in the n-doped
layer and also negligible rx�Fp Ð rx�V for holes in the p-doped region—
both conditions are met by hypothetic high (infinite) carrier mobilities/diffusion
coefficients.

3If the thickness of the semiconductor is less than the width of the space-charge region, the surplus
of charges needed for chemical equilibrium is located in the outer metal contacts of the device.
4Regardless of its mode of operation (except for particularly extreme cases which are irrelevant
for our purposes), the space-charge region of a diode exhibits spatial gradients in the conduction
and valence bands. These gradients also exist in thermal equilibrium (no illumination, no applied
voltage, etc.), where—in accordance with the second law of thermodynamics—definitely no
current can flow. Here we do not discuss Brownian motion, which does not contribute to stationary
carrier flows.
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• Accordingly, the externally applied voltage only drops within the space-charge
region of the junction, modifying the widths of those regimes at the n- and the
p-side, and thereby changing the built-in voltage towards Vbi � Vext.

• The p- and n-doped regimes are infinitely extended (p-side within �1 � x � 0,
and n-side within 0 � x � 1).

• The supply of majority and minority carriers to contribute to the resulting current
density is provided by thermal generation. Due to the assumption of infinitely
extended n- and p-layers, there is no limitation to their total generation rates.
Figure 5.4 shows zero applied voltage, forward bias, and reverse bias conditions.

With these assumptions, under forward bias voltage, carriers from the majority-
carrier side, electrons from the n-type and holes from the p-type region, are injected
across the interface into the adjacent layers. In the space-charge region, the majority
carriers govern the entire current density. Therefore, this current density in forward
bias is comparatively high (Fig. 5.4 center).

In reverse bias, electron and hole minority carriers determine the current density
across the barrier regime (Fig. 5.4 lower part), resulting in an extremely low total

Fig. 5.4 Schematic band
diagrams of a homogeneous
pn-junction under zero
applied voltage (upper),
under forward bias voltage
Vext > 0 (center), and under
reverse bias voltage Vext < 0

(lower). Arrows indicate
major current contributions
across the barrier.
Recombination in the
space-charge region has been
excluded by definition
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current density. The excess carrier concentrations in the layer adjacent to the
reservoirs from which they have been injected, be they majority (forward bias) or
minority carriers (reverse bias), are exhausted by recombination, which is assumed
in the simple model to occur only outside the space-charge regime.

For the analytical formulation of current densities in a pn-junction, we shall
neglect effects in the spatial extent of the space-charge region. We explore the
probability for transport in this artificial step-like energy configuration by compar-
ing the carrier concentrations left and right side of the junction at their respective
transport levels; the lowest energetic level for transport of electrons across the
barrier is the conduction band edge of the p-doped regime (�C;p-side), for holes the
highest level is correspondingly the valence band edge (�V;n-side) of the n-type doped
semiconductor.5

The concentration of carriers in the bands, here discussed for electrons in the
conduction band, and the relevant number of those above a particular energy, such
as above the potential step, is expressed through the density of states in the band,
and their occupation is described by Fermi-Dirac statistics (Fermi or quasi-Fermi
distributions).

The electron concentration in the conduction band of the p-side is

nCB,p-side.�/ D DCB.�/
1

exp

�p-side � �F

kT

�
C 1

; (5.18)

whereas the electron concentration at the n-side amounts to

nCB,n-side.�/ D DCB.�/
1

exp

�n-side � �F

kT

�
C 1

: (5.19)

The level �C,p-side as the edge of the conduction band in the p-type doped region
in thermal equilibrium corresponds to the level �C,p-side D �C,n-side C eVbi in the n-
doped region, where the very same electron density appears, since the Fermi level in
thermal equilibrium is ‘horizontal’ (see band diagram in the upper part of Fig. 5.4).
So the entire concentration of electrons for energies � 
 �C,p-side D �C,n-side C eVbi

is then

nCB,p-side D
Z 1

�C, p-side

DCB.�/
1

exp

� � �F

kT

�
C 1

d�

D
Z 1

�C, n-sideCeVbi

DCB.�/
1

exp

� � �F

kT

�
C 1

d� D n�
CB,n-side ; (5.20)

and is identical for thermal equilibrium.

5We may also regard the extension of the electron and hole-wave functions which are extended
infinitely in the infinite device for energies � � �C;p-side for electrons and � � �V;n-side for holes.
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For a departure from thermal equilibrium due to an applied voltage Vext,
either forward or reverse bias (see Fig. 5.4 center and lower part), the electron
concentration at the level �trans D �CB,p-side allowing for transport in �1 � x �
C1 is no longer identical on the left- and right-hand sides of the junction, since
the applied voltage shifts the bands relative to one another: the n-side goes up with
respect to the p-side for forward bias, and down for reverse bias. In other words,
the term of the built-in potential in thermal equilibrium eVbi is now modified by the
externally applied voltage and writes .eVbi � eVext/.

With the approximation of the Maxwell–Boltzmann statistics, we get the electron
density in the n-region (right-hand side of the junction) at the transport energy level:

nCB,n-side D n�
CB, n-side exp

�
eVext

kT

�

: (5.21)

This now departs from the value on the left-hand side, which reads

nCB,p-side D n�
CB,n-side (5.22)

by the factor exp
� eVext

kT

�
. The difference in concentration of electrons available for

transport at the junction will lead to an exchange across the interface between the
p- and n-type regions (x D 0, see Fig. 5.5), to be formulated by diffusion.6

6Diffusion of a particular species originates from the spatial gradient of their concentration n.x/.
The resulting flux � reads � .x/ D D

��rn.x/�, where D is the diffusion coefficient. The spatial
density n.x/ is derived by solving the steady-state continuity equation

r��n.x/u.x/� D r �� .x/ D g.x/� r.x/ :

With carrier velocity u.x/ generation rate g.x/ D 0 and recombination rate given by the quotient of
the density n.x/ and the lifetime  , viz., r.x/ D n.x/= , we arrive at the second order differential
equation

r���Drn.x/� D �D�n.x/ D �n.x/


:

In one dimension, this has the general solution

n.x/ D A exp

�

C xp
D

�

CB exp

�

� xp
D

�

:

The length
p
D D L is called the diffusion length. In the case considered here, for infinite

extension of the p-type regime (towards x ! �1) and n-type region (towards x ! C1), only
one of the terms of the solution meets the boundary condition of density n approaching zero at
infinite distances from the junction, and we arrive at n.x/ decaying purely exponentially either in
x < 0, or in x > 0.
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Fig. 5.5 Abrupt
homogeneous pn-junction
with schematic carrier
distribution functions left and
right side of the junction in
thermal equilibrium (upper
part) and under forward bias
voltage (eVext > 0)
demonstrating the larger
electron concentration at the
transport level �C;p-side in the
n-type doped part of the
junction (lower part)
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This diffusion current density is written for the position of abrupt p�n-interface
where we have disregarded the space-charge region and where no recombination of
carriers has occurred. The electron contribution (jn) to the total diffusion current
density is

jn.x D 0/ D eDnrn .x D 0/ D eDn

�
nCB,p-side � n�

CB,n-side

Ln

�

D e
Dn

Ln
nCB,p-side

�

exp

�
eVext

kT

�

� 1
�

; (5.23)

where nCB,p-side D np0 represents the thermal equilibrium electron concentration
(minorities) in the conduction band of the p-type region. At the interface the entire
electron current density in the p-type region is caused by electrons in the CB,
whereas with increasing distance from the interface towards x < 0, both electrons
and holes contribute to the current. Due to the infinite length of the diode resulting
in a single exponential decay of the excess electrons in the p-regime, the gradient
rn.x/ in the above relation can be written comparatively simply as

rn .x D 0/ D nCB,p-side � n�
CB,n-side

Ln
:

The contribution of holes in the valence band is formulated equivalently, because
the factor between the hole concentration in the minority and the majority region
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amounts to exp
� eVext

kT

�
as well:

jp.x D 0/ D eDprp .x D 0/ D e
Dp

Lp
pVB,n-side

�

exp

�
eVext

kT

�

� 1
�

; (5.24)

where pVB,n-side D pn0 denotes the thermal-equilibrium hole concentration, these
being once again the minority carriers in the valence band in the n-type doped
regime. Of course, in our one-dimensional steady-state approach, the total current
density of a non-illuminated diode with an externally applied voltage adds up the
contributions of both carrier types, so that finally,

j D jn C jp D e

�
np0Dn

Ln
C pn0Dp

Lp

��

exp

�
eVext

kT

�

� 1
�

D j0

�

exp

�
eVext

kT

�

� 1

�

; (5.25)

where

j0 D e

�
np0Dn

Ln
C pn0Dp

Lp

�

is called ‘reverse saturation’ current density originating from both thermal-
equilibrium minority carrier densities.

5.1.3 Illuminated Homogeneous pn-Diode

The illumination of a diode with photons of appropriate energy „! 
 �g (�g denotes
the optical band gap) leads to a perturbation of the thermal equilibrium state by
additionally photogenerated carriers (electrons in CB and holes in VB). Under
regular sunlight, even if concentrated by a factor of several hundred compared to
one-Sun-illumination, the increase in majority-carrier density by illumination is
negligible, whereas the increase in minority density is considerable. The current
density j.Vext/ of non-illuminated diodes is modified by the contribution of pho-
togenerated minority carriers which add up to a negative flux of charges, .�jphot/.
Neglecting the contribution of photogenerated majority carriers the current density
of the illuminated diode is then

jillum D e

�
np0Dn

Ln
C pn0Dp

Lp

��

exp

�
eVext

kT

�

� 1

�

� jphot

D j0

�

exp

�
eVext

kT

�

� 1

�

� jphot ; (5.26)
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which coincides qualitatively with the relation of the ideal two-band system
presented in Sect. 4.2.4. (A detailed description of the behavior of dark and
illuminated pn-diodes in the language of semiconductor devices has been given,
i.e., by Wagemann and Eschrich [5].)

5.1.4 Comparison of Homogeneous pn-Junctions
with the Ideal Converter

In the ideal converter, which consists of an undoped (intrinsic) electronic two-
band system (Sect. 4.2.5), the splitting �Fn � �Fp of the quasi-Fermi levels under
illumination is limited exclusively by radiative recombination. In the approximation
with Maxwell–Boltzmann statistics, we write

�Fn � �Fp D �F C kT ln

�
n

n0

	

�
�

�F � kT ln

�
p

p0

	�

: (5.27)

Moreover, we introduce the carrier concentrations (composed of thermal equilib-
rium densities, n0, p0, and photogenerated excess concentration �n, �p) in the
upper and lower energy levels, namely electrons in CB and holes in VB:

n D n0 C�n; p D p0 C�p ;

and arrive at

.�Fn � �Fp/ D kT ln

�
�nC n0

n0

	

C kT ln

�
�p C p0

p0

	

D kT ln

�
n0p0 C�n .n0 C p0/C�n2

n0p0

	

D kT ln

�
np

n0p0

	

;

(5.28)

assuming that �n D �p, and remembering that n0p0 D n2i .
In a homogeneous pn-diode (a frequent example of this type of diode is a

crystalline silicon junction), with very same band gap and at equal temperature,
the separation of the quasi-Fermi levels is achieved in both the p-type and n-type
regions (see Fig. 5.6). Provided the splitting is identical in both parts of the absorber
(symmetric behavior in the p- and n-regimes), we find

�
�Fn � �Fp

�ˇˇ
p-type D �

�Fn � �Fp
�ˇˇ
n-type :
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Fig. 5.6 Schematic band diagram of an illuminated homogeneous pn-junction with splitting of
quasi-Fermi levels, assuming that the quasi-Fermi levels of majority carriers do not depart from
their thermal equilibrium position, i.e., �Fp D �F,p-type and �Fn D �F, n-type; note that the splitting of
the quasi-Fermi levels decays with increasing distance from the junction due to recombination of
the injected minority carriers

Although the contribution to �Fn � �Fp in the p-type doped absorber results mainly
from the shift of �Fn, and in the n-type regime from the shift of �Fp, the total
contribution is,

.�Fn � �Fp/ D kT ln

�
np

n0p0

	

D kT ln

�
np

n2i

	

: (5.29)

Obviously in our hypothetic undoped two-band system the splitting of quasi-
Fermi levels does not depend on the position of the Fermi level �F. The excess carrier
densities �n and �p hence, under illumination are governed by the recombination
lifetimes  , and by generation rate g, which enters into�n D gnn and�p D gpp.

In doped electronic band systems, however, the impurity levels have to be
considered for recombination as well which in addition to the ideal undoped band
system, only allowing for radiative transitions, will increase the total recombination
rate and thus reduce the actual recombination lifetimes and hence also the excess
carrier density and the splitting .�F��Fp/.7 Consequently, the separation of the quasi-
Fermi levels in illuminated pn-diodes is reduced below that of the ideal absorber
device of Sect. 4.2.4.

In comparison with undoped absorbers, in doped ones the thermal equilibrium
concentrations of majority carriers (here designated by primes) are increased n�

0 >

n0 and p�
0 > p0, and since these act as partners for recombination of photo excited

minority carriers, the respective recombination rates are increased furthermore. In
essence, by this effect of doping for identical optical generation, the photogenerated

7See, for example, the recombination in a 3-level system, as discussed in detail in [6].
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steady-state concentrations in the pn-diode get again lower than that in the ideal
undoped device:

�n� < �n ; �p� < �p :

For doped regimes the numerator in the argument of the logarithm in Eq. (5.28) gets
smaller, whereas the denominator keeps unchanged; with

�n� D 
�n ; �p� D 
�p :

and 
 < 1 we easily find8

�Fn.�n
�/� �Fp.�n

�/
�Fn.�n/ � �Fp.�n/

D ln
�

�n.n0 C p0/C 
2.�n/2

�

ln Œ�n.n0 C p0/C .�n/2�
< 1: (5.30)

5.1.5 Upper Limits of the Open-Circuit Voltage Achievable
in pn-Junctions

The open-circuit voltage in junctions is governed by the splitting of the quasi-
Fermi energies (�Fn � �Fp) which increases monotonically with the degree of
photoexcitation (light flux). For sufficient departures from thermal equilibrium we

may approximate (�Fn��Fp/ D kT ln
h
np

n0p0

i
. For an excitation with fluxes far beyond

that achieved with solar photons—even at maximum solar light concentration—the
Fermi energies approach the bands (�Fn ! �C) and .�Fp ! �V/ and consequently
stimulated transitions are no longer negligible, means, the system will undergo the
transition to ‘inversion’ and lasing.

In junctions, commonly used for charge separation, there exists another effect
limiting the open-circuit voltage: It results from the competition between pho-
togenerated minority and their counterpart the photogenerated majority carriers.
Here we exemplarily examine the balance of conduction band electrons as minority
carriers (in the p-doped regime) and majority carriers (in the n-doped regime) of
a pn-junction, as in Fig. 5.4 when Vect D Voc. Assuming that the quasi-Fermi
level approach is again applicable, we balance the p- and n-side electrons without

8We immediately recognize with 
 < 1 for the arguments in the ln-functions�

�n.n0 C p0/C 
2.�n/2

�
<
�
�n.n0 C p0/C .�n/2

�
, and remember the natural logarithm to

be a monotonous function to find the ratio of the respective ln-functions.
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consideration of an eventual influence of the space-charge layer (recombination
therein), writing

np0 C�n D .nn0 C�n/ exp

�

��g � eVoc

kT

�

: (5.31)

We assume the Fermi levels in the p- and n-regime to be close to the band edges
(�F,p-type D �V,p-type and �F, n-type D �C, n-type). We also assume that generation rates
and lifetimes in the p- and n-regions are identical (�n D �p/. From thermal
equilibrium, we know that nn0 D np0 exp

���g=kT
�
, whence

np0 C�n D


np0 exp


 �g

kT

�
C�n

�
exp

�

��g � eVoc

kT

�

; (5.32)

or

eVoc D kT ln

2

6
6
4

1C�n=np0

1C �n

np0
exp



� �g

kT

�

3

7
7
5 : (5.33)

Figure 5.7 shows the increase in eVoc versus generation rate of minority and major-
ity carriers �n=np0, saturating at respective band gaps when the photogenerated
carrier concentration approaches the thermal equilibrium majority carrier density.
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Fig. 5.7 Schematic dependence of the maximum achievable open circuit voltage Voc derived from
splitting of quasi-Fermi levels in a homogeneous pn-junction versus carrier density n D n0 C�n.
The splitting .�Fn � �Fp/ saturates when the photoexcited excess minority density approaches the
thermal equilibrium majority concentration (exemplarily chosen �g from 0:1 to 1:0 eV in 0:1-eV
steps, kT D 0:026 eV)



5.1 Homogeneous pn-Junctions 125

5.1.6 Ideality Factor of Diodes

The current-density–voltage curve j D j.V / was derived for the ideal converter
in Sect. 4.2.4, and for a pn-junction with ideal properties in Sect. 5.1.3, where the
excess charges injected across the junction recombine exclusively in the respective
opposite regimes outside the space-charge region. This assumption results in a
relation j D j.V / containing the exponential term exp.eVext=kT/. The denominator
kT in the argument of the exponential expression reflects the linear recombination
kinetics of excess electrons injected from the n-side into the conduction band of the
p-side where they recombine with majority carriers, the holes. The corresponding
spatiotemporal relation for motion and recombination of electrons in the p-doped
regime, the continuity equation, is

1

e
rj D Dn�

�
np.x/ � u.x/

� D g � r D �np.x/
n

; (5.34)

where n, g and u are carrier concentration available for transport, generation rate,
and carrier velocity. The recombination rate r depends on the spatially dependent
density np.x/ and its final state counterpart, the holes pp.x/, which in the p-type
semiconductor represent the majority carriers and are taken as independent of the
spatial position, that is, pp.x/ D pp0 D constant.

When recombination occurs mainly in the space-charge regime [7] where the
densities of both conduction-band electrons and valence-band holes are spatially
dependent, the recombination rate depends on n.x/ � p.x/. The product governing
the recombination rate

n.�/ � p.�/ D DCB.�/fF.�Fn/DVB.�/fF.�Fp/

D DCB.�/DVB.�/

0

B
@

1

exp

�e � �Fn

kT

�
C 1

1

C
A

0

B
@

1

exp

�Fp � �h

kT

�
C 1

1

C
A

(5.35)

(Here, �e and �h designate the individual energies of electrons (in CB) and
holes (in VB).) In a symmetric configuration with identical densities of states in
VB and CB and same doping of n- and p-regions, the n.�/p.�/-product peaks at
� D .�C � �V/=2, reflecting the major recombination rates at energies around half
the gap value9 (see Fig. 5.8).

In this particular approach, the carriers moving across the interface are assumed
to recombine exclusively in the space charge region regardless whether these are

9When looking at the peak of the np-product more closely, we have neglected the contribution of
the comparatively weak dependence of the densities of states on energy (D.�/ � p

�.
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Fig. 5.8 Qualitative recombination rate in the middle of the space charge region of a symmet-
rically doped pn-junction derived from the product fFermi.1 � fFermi/ versus energy .�=�g/. The
maximum recombination rate appears at the position of �F, here, due to the symmetric doping, at
midgap position (temperature range 6:5K � T � 52K; 6:5K-steps; �g D 1 eV)

minority (reverse current), or majority carriers (forward current), and independent
of in the dark or under illumination. Accordingly the current density is governed
by recombination with a net rate U D R � G0, where R is a total recombination
rate and G0 a thermal generation rate. In symmetric junctions, as assumed above,
recombination lifetimes of electrons and holes are identical, n D p D rec, and we
have equal thermal-equilibrium concentrations n0 D p0. For forward bias voltage
with

np D n0p0 exp

�
eVext

kT

�

D n2i exp

�
eVext

kT

�

;

the net recombination rate (SRH ansatz) is then [6]

U D
n2i exp

�
eVext

kT

�

rec .nC p C 2ni /
: (5.36)

For sufficiently large departures from thermal equilibrium, i.e., n 	 ni and p 	 pi ,
and pi D ni , we simplify the denominator and write

U �
n2i exp

�
eVext

kT

�

rec .nC p/
D
n2i exp

�
eVext

kT

�

rec .nC p/
D

n2i exp

�
eVext

kT

�

rec2ni

s

exp

�
eVext

kT

�

D
n2i exp

�
eVext

kT

�

rec2ni exp

�
1

2

eVext

kT

� : (5.37)
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Since the major recombination rate U � Upeak is maximal at the midpoint of the
junction,10 we arrive at

U � Upeak �
exp

�
eVext

kT

�

exp

�
eVext

2kT

� D exp

�
eVext

2kT

�

: (5.38)

The recombination current density in the forward direction integrates spatially
across the recombination region, a small regime with Upeak, and exhibits the very
same dependence on the external voltage:

jforward � exp

�
eVext

2kT

�

: (5.39)

This modifies the total current density in the dark diode to

j D jforward C jreverse D j0

�

exp

�
eVext

2kT

�

� 1
�

: (5.40)

Analogously, for the illuminated diode, we get

jillum D j0

�

exp

�
eVext

2kT

�

� 1
�

� jphoto ; (5.41)

where jphot represents the photo-current density corresponding to the rate of the
entirely absorbed photon flux (see Sect. 4.2.4).

In real diode devices there might be a mixture of both types of recombination
processes, in the space-charge regime and outside, resulting in the so-called diode
ideality factor n with 1 � n � 2.

Another, more phenomenological approach consists of a parallel arrangement of
diodes [8] with different ideality factors. For example, in a two-diode model, we
may formulate the total current density under illumination by

jillum D j0;i

�

exp

�
eVext

ni kT

�

� 1

�

C j0;j

�

exp

�
eVext

nj kT

�

� 1
�

� jphoto : (5.42)

In our general thermodynamic view, the diode ideality factor n might be introduced
into the temperature as nT D T �, and with n > 1, we see that T � > T , and
consequently the device works formally at a higher temperature than the nominal

10In this approach (named SHR-approach after Shockley, Read, and Hall) the recombination rate
depends on the carrier concentrations in the bands U v np and accordingly the transition is
radiative.
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Fig. 5.9 j –V curve and
characteristic magnitudes Voc

and mpp of a pn-junction for
different temperatures n ˘ T ,
imitating the effect of the
diode factor n when it departs
from the ideal n D 1 towards
n > 1
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temperature, e.g., 300 K environmental temperature. As a consequence of the higher
effective Temperature nT D T � > T of the heat sink the efficiency of the device
drops with increasing diode ideality factor n.

In the semiconductor device picture outlined schematically in Fig. 5.9, an
increase in temperature will decrease the open-circuit voltage Voc of the illuminated
diode as well as its filling factor FF, and hence also the complete conversion
efficiency.

Moreover it is even confusing that j � V curves of real solar cells with
various types of non-ideal behavior (non-radiative recombination, limited transport,
interface effects, etc.) are commonly used to be reproduced with diode factors11

n > 1, where the diode factor in the denominator of the argument of the exponential
function describes the behavior of very ideal diodes only operated at (modified)
temperature, T � D n � T .

5.1.7 Relevance of Space Charge Region for Charge
Separation

The space charge region in diodes effectively provides for an asymmetry in terms of
source and sink of photogenerated carriers. The gradients in the energy levels, such
as rx.�C.x// and rx.�V.x// are definitively not the origin of carrier motion and
charge separation, because such gradients also exist in thermal equilibrium, where
apart from Brownian motion, no charge flow exists (for electrons see Fig. 5.10 left
part, where rx.�C.x// ¤ 0, and rx.�Fn.x// D 0).

From semiclassical transport theory the driving force of a species ni is the
spatial gradient of its chemical potential 	i.x/, which constitutes of quantities,

11Diode factors n > 1 by all appearances are usually interpreted to reflect losses of additional
irreversible effects in recombination and transport.
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Fig. 5.10 Conduction band edge �C.x/ and electron quasi-Fermi level �Fn.x/ versus spatial
coordinate x indifferent situations; left, r�Fn.
/ D 0, no electron motion; center, r�Fn.
/ > 0,
electron motion to the left; right, r�Fn.
/ > 0 electron motion to the right

such as external electric fields (drift), gradients of species concentration (diffusion),
temperature gradients (thermoelectric effects, etc.). Provided the energy distribution
of the particular species may be formulated by Fermi statistics, the chemical
potential	i can be substituted by the respective quasi-Fermi level, e.g, for electrons
by �Fn (see Fig. 5.10).

The relevance, not to say the irrelevance, of the gradients in the band edges
for charge transport across the space-charge region in a diode can be easily
demonstrated by an analytical procedure:

We select a position 
 in the space-charge region, where we regard the electron
density n.
/ as a function of the Fermi level �F.
/ or quasi-Fermi level �Fn.
/,
the temperature T .
/, the externally applied voltage Vext, as well as their spatial
gradients (see Fig. 5.10).12

We start with the electron concentration in the conduction band n.
/ at position

 in the space-charge region:

n.
/ D N0
1

exp

�
�C.
/ � �Fn.
/

kT.
/

�

C 1

; (5.43)

and write n.
/ D n0.
/ C �n.
/, where �n.
/ D g�
0 

� is the general expression
for the local excess electron density.13 The corresponding regions carry subscripts p
and n. For a symmetric homogeneous junction with identical dopand concentration,
we get the splitting

�C.
/ � �Fn.
/ D kT ln

�
N0

n.
/
� 1

	

D kT ln

�
N0

n0.
/C�n.
/
� 1

	

; (5.44)

12In this analytical approach for the determination of the r�Fn, we only require information about
the local behavior of �C.
/ and �Fn.
/. Of course, we gain no knowledge of the ‘outer’ magnitudes
of the device, such as current density, applied voltage, etc.
13Of course, the local excess concentration �n.
/ D g�

0 
� results from photogeneration, and

respective motion and recombination of electrons; however, we neither need to know, nor we are
interested in the details of its development.
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and
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(5.45)

which we abbreviate to

�C.
/ � �Fn.
/ D kT lnˇ : (5.46)

We form the spatial gradient of the quasi-Fermi level �Fn.
/ which delivers the
general driving force for electrons:

r�Fn.
/ D r�C.
/ � r�kT lnˇ
�
: (5.47)

We immediately see that the driving force for the motion of electrons (here,
in the space-charge region) is not the so-called ‘electric field’ derived from the
gradient r�C, but rather is significantly modified by contributions resulting from
the gradients of the Fermi level �F.
/, of the temperature T .
/, and of the excess
electron density�n.
/. Only for particularly extreme and in fact non-realistic cases
such as T ! 0 does the driving force reduce to r�C.

The full algebraic relation of the gradient of the quasi-Fermi level for spatially
constant temperature T is given by

r�Fn.
/D r�C.
/

2

41 �
exp
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(5.48)
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Figure 5.11 shows the ratio of r�Fn=r�C versus excess carrier concentration
�n=n0 for applied voltage Vext D 0 (representing short-circuit conditions) and
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Fig. 5.11 Ratio of r�Fn=r�C in a hypothetical electronic two-level diode system (�C D 1 eV,
�F D 0:5 eV, N0 D 1010 cm�3) versus normalized excess carrier concentration �n=n0 at T D
300K. Left: vanishing externally applied voltage Vext D 0V (corresponds to short circuit); right:
applied voltage Vext D C0:5V. Light fluxes are associated with 4 � log10 Œ�n=n0� � 7

Vext D C0:5 V (forward bias)14 for different temperatures. It is clear that the
driving force for electron motion, the gradient in chemical potential r�Fn, is hardly
expressed by the ‘electric field’ derived as r�C. Even under short-circuit conditions,
where the entire internally generated gradient of the chemical potential accounts for
carrier transport, the gradient of the electron quasi-Fermi level departs substantially
from the gradient of the conduction band edge, viz., r�Fn � r�C.

5.1.8 So-Called Back Surface Field

At the rear end of an absorber is a lead out of the device which generally consists
of a metal contact. The excess lifetime (wave vector relaxation time) of carriers in
excited states in metals is extremely short, lying somewhere near 10�13 s. Thus, by
strong recombination, the metal contact collects the excess carriers from the rear
end of the absorber and may affect the excess carrier density, thereby squeezing the
splitting of the quasi-Fermi levels which depend on diffusion properties deep within
the bulk of the absorber.

For preventing losses like these, a so-called ‘back surface field’ (BSF) is
introduced at the absorber rear side in order to ‘repel’ excess minority carriers
from the rear contact. However, in terms of transport, the BSF acts rather as a
doping profile governing the chemical potential of minorities than as an ‘electric
field’. Here, the very same argument for transport is applied, namely the gradient
in chemical potential, as in the space charge region of pn-junctions, which likewise

14As the voltage in the short circuit mode (Vbi) and under bias, e.g. forward bias (Vext > 0) drops
across the space charge region, we may qualitatively compare Vbi and Vext instead of 5�C and
5�Fn.
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Fig. 5.12 Band diagram of
the linearly graded
conduction band (x > 0) as
example of the ‘so-called
back surface field’ for
minority carriers (electrons)
in a p-type absorber
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exhibits a gradient of conduction and valence band energy with no relevance for
carrier motion (Sect. 5.1.7).

We express this shift of the conduction band energy versus depth �C D �C.x/

which basically modifies the thermal-equilibrium concentration of the electrons
in the conduction band of a p-doped absorber, where n.x < 0/ D n0 and n.x/
represent the minority concentration (see Fig. 5.12).15

For the sake of simplicity, we assume a linear increase �C.x/ D �C0 C xı, with
gradient rx�c D ı (ı > 0). The total carrier concentration is composed of an excess
density �n D const, assumed initially to be independent of local position and also
of the thermal equilibrium density
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�
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Since we have accepted that the motion (spatial displacement versus time) of any
species is based on the gradient of its chemical potential (in general cases the
gradient of the electrochemical potential), which is represented here by the gradient
of the electron quasi-Fermi level, we calculate this gradient with the approximation

15The thermal equilibrium concentration n is the ‘enemy’ of the excited state characterized by an
excess density �n when entering into the chemical potential

	 D kT ln

�
�nC n

n

	

:
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of the Boltzmann energy distribution neglecting the contribution of the holes, i.e.,
�p � p.x/:

�Fn � �Fp D kT ln
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C 1

	

: (5.51)

The corresponding gradient of the electron quasi-Fermi level now reads

rx .�Fn/ D kTrx
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and

rx .�Fn/ D ı
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��� : (5.53)

The ratio .rx .�Fn/ =rx .�C// finally shows that the slope ı D rx .�C/ in the
conduction band is not correct as a solution for 5�Fn, and only yields a quantitative
expression for the effect of repelling minority carriers from the rear contact (see
Fig. 5.13):
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Fig. 5.13 Ratio of rx.�Fn/=rx.�C/ versus slope ı [in linear (left) and logarithmic representation
(right)] to show the departure of the correct driving force rx.�Fn/ versus rx.�C/ D ı. For the
calculation: �C.x < 0/� �F D 1:0 eV, ı D 1meV/�m, and n0 D 107 cm�3, �n D 1013 cm�3
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5.2 Heterojunctions

5.2.1 Concept of Heterojunctions

The absorption of electromagnetic radiation in electronic band systems generates
free charges according to the law of Lambert–Beer. As a consequence of this relation
the photon flux in matter decays exponentially with propagation length. Thus the
maximum rate of excess carriers introduced by solar photons is generated at the
light entrance side of the absorber, where strong recombination due to surface states
may substantially lower the steady-state concentration of excess charges and thereby
considerably reduce the exploitation of the solar light.

Figure 5.14 (left) displays excess-carrier depth profiles for various front surface
velocities 100 cm/s � S0 � 106 cm/s and an extremely high rear surface recombina-
tion velocity Sd D 106 cm/s, representing a metallic contact, while Fig. 5.14 (right)
shows the total excess density versus absorber thickness (integral over thickness d
of curves in Fig. 5.14 left) for the different surface recombination velocities. For
large absorber thicknesses, the influence of the front surface gets weaker, since
above a certain depth exceeding the diffusion length the excess density will no
longer ‘feel’ the eventually disadvantageous effect of the surface in terms of surface
recombination.

The concept of a heterojunction consists of an optically highly transparent
window layer in front of the absorber, transferring the high-absorption regime into
the internal device and thereby avoiding the high rate of front surface recombination
(see Fig. 5.15) [9]. An additional benefit of the heterojunction emerges from the high
band-gap window, with lower thermal-equilibrium density of the minority carriers.
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Fig. 5.14 Excess carrier concentration versus depth of absorber for comparatively high rear
surface recombination velocity (Sd D 106 cm/s) and different front surface recombination
velocities S0 D .10�1 , 3 � 10�1, 10�1; : : : ; 105/ cm/s (left); total excess carrier concentration
(integral of data on the left) versus spatial depth x=d for identical set of surface recombination
velocities S0 and Sd (right) with ˛ D 2=d , L D 0:7d , D D 10 cm2/s
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Fig. 5.15 Geometrical
design of a heterojunction
with high-band gap window
layer at the light entrance side
and a lower band gap
absorber

Fig. 5.16 Spatial decay of
the electron wave function at
the band offset of a low gap
absorber (right part) towards
a high band gap window
semiconductor (left part).
This concept announces
electronic states in the gap at
the interface, although
chemical interface passivation
seems to be perfect
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In principle, this reduction by the contribution of the window minority carriers
results in a considerable reduction of the reverse saturation current density, which
in turn is beneficial for the open-circuit voltage.

However, these advantages are in reality often jeopardized by the influence
of defect states at the interface between window and absorber, which allow the
transition of majority carriers to their respective ‘minority-carrier side’ by tunneling
and subsequent recombination. This effect disadvantageously initiates an increase
in the reverse saturation current density and provides for additional recombination
paths lowering the density of photogenerated minority carriers.

Interface states primarily arise from differences in structural properties between
window layer and absorber, including different crystallographic structures, different
crystal orientations, and/or different lattice constants. Secondly, an electronic
contribution to interface states originates from the difference in the � D �.k/
relations of the window and absorber and introduces electronic states in the window
layer through the exponentially decaying wave functions of electrons and holes in
the absorber (see schematic energy step at the interface in Fig. 5.16).

In strongly absorbing direct semiconductors only few microns for efficient solar
light absorption are needed. Accordingly in those thin absorbers the negative effect
of recombination particularly of the front surface has to be suppressed by protecting
the light entrance side with a window layer to form a heterodiode. These are
commonly prepared with so-called ‘thin film absorbers’, such as polycrystalline
chalcogenides CdTe, CdSe, CuS, etc., chalcopyrites Cu(In,Ga)(S,Se)2, or kesterides
Cu2ZnSn(S,Se)4.
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5.2.2 Electronic Properties of Heterojunctions

The electronic properties of heterojunctions are qualitatively the same as those of
homogeneous junctions. The vacuum levels of the p- and n-side have to be aligned
similarly (with a continuous vacuum level), and the band diagram (see Fig. 5.17)
is formed in an analogous way, except that at the interface between window and
absorber the normal components of the dielectric displacement functions instead of
the normal components of the electric field are continuous.

Due to the difference in optical band gap between window and absorber (�g;wind >

�g;abs), and due also to the generally different electron affinities (�wind ¤ �abs),
discontinuities occurs in the conduction and valence bands, and this usually creates
spikes and/or cliffs strongly affecting charge flow across the junction and once again
supporting recombination at the interface.16

The main relation j D j .Vext/ remains unchanged, although the respective
magnitudes j0 and the diode ideality factor n may differ from those in idealized
homogeneous junctions, where n D 1. In the illuminated diode, absorption in
the ideal situation is only performed in the absorber, providing for the entire
photocurrent. The total photogenerated carrier density in the absorber needed to
establish the splitting of the quasi-Fermi levels (�Fn � �Fp) is counteracted by the
reverse saturation current density. The competition between photogenerated and
thermally generated carriers for the desired high values of .�Fn � �Fp/ is thus almost
exclusively carried out in the absorber.

Fig. 5.17 Typical band
diagram of a heterojunction.
Band offsets occur as a
consequence of continuous
vacuum level and differences
in electron affinities (�i) and
in band gaps (�g;i) of the
absorber and the window
layer

16For the correct reproduction of a heterojunction band diagram, and in particular for the band
behavior at the interface, the different dielectric functions of the individual layers have to be
considered.
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5.3 pin Diodes

5.3.1 Concept of pin Diodes

The concept of pin diodes basically results from optical detectors in which,
in reverse bias at sufficiently high applied voltages, photogenerated carriers are
collected at the contacts. Since the degree of carrier collection determines the
response of the detectors, a homogeneously distributed driving force across the
entire thickness of the absorbing layers is desired for the photogenerated charges.
Instead of using a pn-junction, where the distribution of the ‘driving force’ is
substantially inhomogeneous, pin diodes have been developed, with extremely thin
p- and n-doped layers sandwiching an undoped (intrinsic) absorber layer of much
larger thickness (see the schematic band diagrams in Fig. 5.18).

Fig. 5.18 Highly simplified
band diagram of a pin
junction in short-circuit
situation (top), in forward
bias (center), and in reverse
bias (bottom)
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In particular, for semiconductors with low diffusion lengths and low carrier
mobilities,17 this pin design has been also used for solar cells.

5.3.2 Space-Charge Region in Real pin Diodes

In disordered semiconductors like in a-Si:H, due to the lack of translational
symmetry, the density of states at the band edges shows localized tail states and a
specific density of dangling-bond states deep within the pseudogap. Consequently,
in the intrinsic region, the charges in the p- (negatively charged acceptors) and in the
n-doped overlayer (positively charged donors) will be at least partially compensated.
This compensating charge substantially modifies the band diagram of an ideal pin
diode with originally desired constant gradients in the conduction and in the valence
band.

We estimate the influence of the space charge in the i -layer, originating mainly
from carriers trapped in tail and deep defect states, and assume exemplarily a trian-
gular distribution with a slope a as sketched in Fig. 5.19 for thermal equilibrium.

In addition to the constant gradients in the conduction- and valence-band edges
resulting from the negatively charged p-layer and the positively charged n-side, the
band structure is modified by space charges

�.x/ D � ea

"0"
x ;

which integrates to

Esc.x/ D
Z w=2

�w=2
�.x/dx D � ea

2"0"

�

x2 �

w

2

�2	

; (5.55)

p            i             n

x

(x)
p            i             n

x
(x)dx

Fig. 5.19 Schematic space-charge distribution �.x/ in a pin diode and corresponding integralR
�.x/dx derived qualitatively via Poisson’s equation

17Semiconductors with significantly disturbed translational symmetry, such as amorphous or
microcrystalline silicon thin films (a-Si:H, 	c-Si:H) and their corresponding alloys with other
group IV elements like Si-Ge- and Si-C-alloys show such low mobility and low diffusion lengths.



5.3 pin Diodes 139

0.4 0.2 0 0.2 0.4
spatial coordinate x w

1

0.5

0

0.5

1

C
x

bra
.

nu
.

a

0.4 0.2 0 0.2 0.4
spatial coordinate x w

0

0.2

0.4

0.6

0.8

1
tneidarg

C
x

bra
.

n u
.

a

Fig. 5.20 Effect of triangular-shaped space charges in a pin diode on the gradient of conduction
band �r�C.x/ (left) (some call it the internal field) and on the local distribution of the conduction
band edge �C.x/ (right)

sketched in Fig. 5.20 (left). Furthermore, after a second spatial integration, we find

� eVsc.x/ D � .�e/
Z
Esc.x/dx D e2a

2"0"

�
1

3
x3 �


w

2

�2
x

	

C C : (5.56)

This energy eVsc is superimposed on the linear spatial dependence of the bands
without internal charges. The integration constant C is chosen intentionally to align
the bands on the right-hand side of the space-charge region with zero (a D 0)
(Fig. 5.20).

We immediately see that the ‘electric field’18 is substantially modified by the
space charge, and can even vanish, e.g., in the center (x D 0), for a specific choice
of parameters.

5.3.3 Charge Separation by Gradients of Quasi-Fermi Levels

Once again, the real driving force for the motion of carriers, either injected by light
or emanating from the contacts under an applied voltage, are the gradients of the
quasi-Fermi levels of holes and electrons, as generally formulated in Sect. 4.2.9.

In pin diodes, the detailed expressions for local electron nCB.x/ and hole pVB.x/

concentrations—in the dark or under illumination—are much more complicated,
since in the i -layer both carrier types are ‘minorities’ and contribute to the
photocurrent, and their concentrations are coupled by Poisson’s equation. Needless
to say, nCB.x/ and pVB.x/ consist of charges in the bands and are trapped in any
tail or defect states, as they occur in amorphous or microcrystalline hydrogenated

18We have to keep in mind that the quantity ‘electric field’ Ex D � R
�.x/dx does not represent

the correct driving force for charge carriers.
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group-IV semiconductors. Roughly speaking, the pin diode behaves qualitatively
like a pn-diode with a considerably extended space charge region.

The only beneficial effect for charge separation in pin solar cells is the longer
lifetime of photoexcited carriers, here electrons and holes, in the undoped i -region,
compared with the much lower lifetime of the relevant minority carriers in the doped
regimes.

In the terminology of Sect. 4.1, the i -region where most of the solar light
absorption occurs, constitutes the source for excess charges in the form of both,
electrons and holes, whereas the n-regime acts as a sink for the excess electrons and
the p-type layer forms the sink for the photogenerated holes.

5.4 Schottky Diodes

Conceptually, metal–semiconductor junctions (Schottky diodes) are the simplest
rectifying devices [1, 10, 11]. Analogously with pn- and pin diodes, the majority
carriers see an energy barrier as a result of the contact between a specifically doped
semiconductor and a metal with appropriate work function �m.

5.4.1 Space-Charge Region and Band Diagram

We construct a rectifying junction between an n-type semiconductor and a metal
with a barrier for the conduction band electrons against transfer to the metal. Let
us say that the metal shows a comparatively high work function �m; n. For a p-type
doped semiconductor, we need the barrier for the holes, with a relatively low metal
work function �m; p (see Fig. 5.21).

The local space charge and the corresponding band diagram in the space-charge
regime are derived here as an example for the metal/n-type semiconductor junction,
where the position x D 0 indicates the interface between metal and semiconductor.
The formal height of the barriers yields, in the metal/n-type barrier,

�b; n D �m; n � �n � .�C � �F/ ; (5.57)

and accordingly for the metal/p-type junction,

�b; p D �p C �g � .�F � �V/� �m; p; (5.58)

with �g D .�C � �V/ and electron affinities �n, �p as difference of energetic position
of the vacuum level �vac and the conduction band edge �C.
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Fig. 5.21 Band diagrams of metal–semiconductor rectifying junctions (Vext D 0). Left: Compar-
atively high-work-function metal/n-type semiconductor (˚m;n). Right: Comparatively low-work-
function metal/p-type semiconductor (˚m;p)

The local space charge �.x/ results from holes in the valence band pVB.x/,
electrons in the conduction band nCB.x/, and positively charged donors nC

D . With
the approximation of Maxwell–Boltzmann statistics, we have

�.x/ D e

�

nC
D .x/CNV exp

�

��F � �V.x/

kT

�

�NC exp

�

��C.x/ � �F

kT

�

:

(5.59)

The band bending in the space charge region with potential  .x/ governed by �.x/
reads

�C.x/ � �F D �C; 0 � �F C e .x/ (5.60)

and

�F � �V.x/ D �F � �V; 0 C e .x/ : (5.61)

Using Poisson’s equation in one dimension, we get

d2 .x/

dx2
D ��.x/

"0"
D � e

"0"

�

nC
D C pn0 exp

�
e .x/

kT

�

� nn0 exp

�

�e .x/
kT

�

;

(5.62)

where nn0 and pn0 are the thermal-equilibrium electron and hole densities in the n-
doped semiconductor. In general, the concentration of positively charged donors
also depends on the spatial coordinate x. However, we shall assume complete
ionization nC

D D ND to begin with, because the assumption nC
D D ND � nn0 is
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sufficiently well justified since the Fermi level in the space-charge region towards
the metal contact shifts even further away from the conduction band edge �C,
resulting in correspondingly low probability of donors being neutral.

Rewriting Poisson’s equation to formulate it with an integrating factor, we get

d2 .x/

dx2
D d

dx

�
d .x/

dx

	

D d 0.x/
dx

D F.x/ : (5.63)

The integration reads

 0d 0 D F
�
 .x/

�
 0dx D F

�
 .x/

�d 

dx
dx D F. /d ; (5.64)

and thus
Z
 0d 0 D

Z
F. /d : (5.65)

After a first integration, we find

1

2

�
 0�2 D

Z
F.'/d' C 1

2
const: ; (5.66)

and

 0 D
s�

2

Z
F. /d C const:

	

: (5.67)

From Poisson’s equation above, we have

d2 
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D e

"0"
nn0

�

1C pn0
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; (5.68)

whence we derive
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The next step is to write
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and so to arrive at
Z

1
r
2

enn0

"0"
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s

 C pn0
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e
exp
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kT
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C kT

e
exp
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C C1

D
Z

dx D x C C2 ; (5.71)

which requires a numerical procedure for solution.
As a reasonable approximation, we may neglect the term containing the ratio

of the thermal-equilibrium carrier concentrations, since in an n-type semiconductor
pn0=nn0 � 1. Furthermore, for sufficiently large band bending j �e .x/ j =kT >

3, which means substantial depletion of electrons in the conduction band, we can
neglect the term exp.�e =kT/ to arrive at a simple integral of type

Z
d 

p
ˇ

p
 C C1

D
Z

dx D x C C2 ; (5.72)

using the abbreviation ˇ D 2enn0="0". In the range 0 � x � w, this yields

2
p
ˇ

p
 C C1 D x C C2 : (5.73)

Finally, we solve for the potential

 .x/ D .x C C2/
2 ˇ

4
� C1 : (5.74)

The space-charge region and the band bending in the semiconductor decay towards
x > 0, and at a distance x D w from the metal–semiconductor interface, which is
located at x D 0, we assume band bending to be terminated. The relevant boundary
conditions thus get

 0.x D w/ D 0 D 2 .w C C2/
ˇ

4
(5.75)

and

 .x D w/ D 0 D .w C C2/
2 ˇ

4
� C1 : (5.76)

From the first condition, we immediately find

C2 D �w ; (5.77)
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and introducing this into  0.x D w/, we determine

C1 D 0 : (5.78)

This leads to

 .x/ D .x � w/2
ˇ

4
D .x � w/2

enn0

2"0"
; (5.79)

and

 0.x/ D .x � w/
ˇ

2
D .x � w/

enn0

"0"
: (5.80)

With the above approximation, the linear spatial decay of  0.x/ in 0 � x � w
translates into a parabolic decay of '.x/ versus spatial coordinate x, and resembles
the result for an abrupt space charge distribution � D enn0 D const: in 0 � x � w,
with � D 0 for x > w (see Fig. 5.22). The behavior of the band bending of the n-
type semiconductor is qualitatively and quantitatively equivalent to the n-type part
of the abrupt homogeneous junction in Sect. 5.1.1.

At the metal–semiconductor interface x D 0, we additionally get the so-called
electric field  0.x D 0/ D �.wenn0/=."0"/, and the offset in the bending of the
conduction band designating the barrier height for the majority carriers (electrons):

�B; Sch D e .x D 0/ D w2
e2nn0

2"0"
:

In comparison with the homogeneous pn-junction, the barrier height in the Schottky
diode amounts to only a fraction of this value. In turn, the width of the space charge
is only a fraction of the width in the homogeneous pn-junction, as the contribution
from the metal due to its extremely high electron density is negligible. The width
w of the space-charge region is established in accordance with the concentration of

n-type semiconductor

x
w

x

-e

x
w

` w

w

Fig. 5.22 Qualitative space charge, ‘electric field’, and electron energy (e.g., conduction band
edge) of a metal-n-type semiconductor junction using the approximate analytical treatment above
(Sect. 5.4.1)
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dopants (here donors ND � nC
D ) in such a way that the vacuum level of the n-type

semiconductor and metal meet at x D 0 as already shown in Fig. 5.21.

5.4.2 Illuminated Schottky Diode

The light-entrance side of a Schottky diode is usually the semiconductor, with an
appropriate thickness to provide for sufficient absorption of photons and at the same
time with appropriate lifetime to allow for adequate minority carrier collection. The
metal serves as rear contact and acts in addition as an optical mirror for low-energy
photons.19

The source of the photogenerated minority carriers, in our example holes in
the valence band, is the semiconductor, whereas the sink for the photogenerated
holes is the metal, where they recombine with electrons at � � �F;metal. This
spatial configuration provides for the asymmetry necessary for ‘separation’ of the
photoexcited charges, here solely the holes in the valence band.

The driving force for carriers leading to the total current composed of contribu-
tions of electrons and holes is of course supplied by the gradients in the respective
quasi-Fermi levels, sketched as an example for the holes in an illuminated Schottky
diode in short circuit in Fig. 5.23.

The splitting of the quasi-Fermi levels, and the splitting for no net carrier
extraction, which represents the situation of maximum achievable external voltage

Fig. 5.23 Band diagram of a
metal/n-type semiconductor
junction with qualitatively
indicated quasi-Fermi levels
for electrons (majority
carriers) and holes (minority
carriers) in the short- circuit
mode (Vext D 0) electron

energy

x
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F Fn
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V
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19For the complete device on needs, of course, a transparent front contact.
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Fig. 5.24 Band diagram for a
metal/n-type semiconductor
junction in open circuit for
the idealized condition of
maximum achievable
open-circuit voltage
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(Voc), is not limited in Schottky diodes by the optical band gap of ideal absorbers,
but rather by the height of the barrier �b D �m;n � �n � �

�C � �F, n-type
�
, which acts

on the majority carriers in the absorbing medium, here the n-type semiconductor.
The maximum shift of the Fermi level �F � �Fn in the semiconductor for

arbitrarily high excitation—but below the lasing level—in the vicinity of the
junction leads to a flat alignment of �Fp at the metal Fermi level, together with flat
�Fn and accordingly flat �C and �V (space charge width disappears). The vanishing
gradients in the electron and hole quasi-Fermi levels for each component rule out
carrier transport (j D 0), and we would get open-circuit conditions (see Fig. 5.24).

5.4.2.1 Effective Barrier Heights in Schottky Diodes

In metal–semiconductor junctions, the doping of the semiconductor exclusively
governs the width of the space-charge region and thus determines amongst width
also the shape of the barrier. For spatially homogeneously doped absorbers ND ¤
ND.x/, the high-energy part of the spike-like barrier may be approximated by an
upward step with discontinuity �b and a linear decay. This spiky potential allows for
electron tunneling in the forward direction of the diode at energies �b tunnel below the
formal barrier height �b > �b tunnel (see Fig. 5.25). This tunnel barrier height changes
with the external voltage.20

20The tunneling probability through barriers that are linearly dependent on spatial coordinates is
represented by solutions of the two branches of the Airy-type differential equation.
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Fig. 5.25 Effective barrier
height for majority carriers
(electrons) ˚b;tun < ˚b as a
consequence of tunneling
through a sufficiently thin
energy barrier (diode in
forward bias; Vext > 0)
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Fig. 5.26 Extreme decrease
in effective barrier height for
majority carriers (electrons)
in a heavily doped n-type
semiconductor with
extremely small space charge
region [diode under forward
bias (Vext > 0)]
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Here, the optical threshold energy for photoexcitation of charges, the semicon-
ductor band gap �g D �C � �F is much larger than the electronic threshold �b, which
limits the maximum achievable splitting of the quasi-Fermi levels.

5.4.2.2 Further Drawbacks in Real Schottky Diodes

In real Schottky diodes during preparation of the rear contact, the semiconductor
surface is exposed to metal atoms, possibly under extreme conditions such as
vacuum, high temperatures, and presence of radical species. During those processes,
an intermixing of components of the absorber and of contact materials, such as
interdiffusion of elements is unavoidable. Unfortunately, the incorporation of metal
atoms into a semiconductor generally creates deep defect states for electrons in the
gap, which act as recombination centers for photoexcited carriers and, moreover,
depending on the position of the Fermi or quasi-Fermi levels, are occupied by
charges which contribute to the space-charge region of the junction. In this way,
the average spatial separation of positively and negatively charged sites is decreased
(shrinking of space-charge width) which in turn reduces the total energy of the
system.

A thinner space-charge region leads to a more spiky potential for the majority
carriers and thus lowers their effective barrier height for tunneling. Accordingly
the higher tunnel probability leads to a higher reverse saturation current of then
illuminated diode and affects the photovoltaic performance (see Fig. 5.26).

In addition to the detrimental effect of a reduced effective barrier in real devices,
the interface defects introduced by metals and/or by the preparation technology
are not at all distributed laterally in a homogeneous way. This commonly results
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in a substantial lateral fluctuation of barrier heights. Consequently, the majority
electrons will find the lowest barriers and deteriorate furthermore the photovoltaic
function of the diode.

5.4.2.3 Metal–Insulator–Semiconductor Diodes

In order to establish reproducible and adjustable barrier heights in Schottky
diodes an insulating layer (I-layer) with appropriate thickness allowing for electron
tunneling may be incorporated between metal and semiconductor (MIS diode). The
thickness of these I-layers amounts to only a few nanometers (1–2 nm) and the
lateral area of constant insulator thickness corresponds to some tens or hundreds
of square centimeters (think of 10 � 10 cm2). The relative accuracy of 0.1-nm
fluctuation within 0.1 m lateral extension corresponds to �dI=lI 
 10�9, a ratio
which one might not even think to be technologically easily achievable.

In conclusion, metal–semiconductor barriers have been treated here for com-
pleteness rather than to argue for their actual technical relevance in solar light
conversion devices.

5.5 Excitons and Subsequent Charge Transfer in Organic
Absorbers

The use of organic absorbers for solar light conversion [12–15] requires a substantial
deviation from the concepts of inorganic semiconducting matter. Organic absorbers
are made of molecules of different geometrical sizes, commonly classified according
to their weight, from a few thousand (small molecules) to several tens of thousands
of atomic mass units (polymers). The intermediate mass range has recently been
represented by dendrimers. The fundamental optical, electronic, and optoelectronic
properties of these organic absorbers are qualitatively similar, irrespective of their
size.

In contrast to semiconductor properties which are governed by electron wave
functions resulting from a hypothetic infinitely extended periodic arrangement of
atomic potentials, in organic matter the electron wave functions are determined
by molecular orbits with wave functions that do not extend infinitely and exhibit
comparatively weak overlap to neighbor sites. Weak overlap to adjacent sites,
however, deteriorates charge transport often performed by tunneling. The low
coordination of molecular structures compared to crystal structures, in addition,
usually causes polaron effects, which result in a distortion and/or a rearrangement
of the molecular structure when an electron is excited from the ground state. In
the excited state in molecules, due to the shrinking of its wave function in an
environment of comparatively low dielectric susceptibility, the electron is still bound
to the positive charge and thus forms an exciton.
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5.5.1 General Aspects of Light Absorption and Generation
of Excited States

In organic absorbers the photoexcitation mainly generates bound electron hole
states, called excitons, which are dissociated to free electrons and holes at particular
sites. These sites providing for an individual transport level for the electrons and
analogous ones for the holes, represent the asymmetry needed for the subsequent
charge separation (see Fig. 5.27). The charge separation is commonly facilitated by
a reduction of the energetic separation of electrons and holes originally established
by the optical threshold that represents the energy difference between the lowest
unoccupied molecular level (LUMO) and the highest occupied one (HOMO)

��opt: thresh: D �LUMO � �HOMO

to the level difference

��el: thresh: D �LUMO � �HOMO � .�L C�H/ :

This principle is used in almost all devices based on organic absorbers, such as
molecular dyes in conjunction with conductive matrices or in polymer absorbers.

electron
conductor

LUMO

hole,cond.

HOMO

el,cond.
L

H

x

hole
conductor

absorber

Fig. 5.27 Band/energy diagram of an exciton-generating molecule sandwiched between an
electron (left) and a hole conductor (right). At appropriate energy position of the HOMO (highest
occupied molecular orbit) and LUMO (lowest unoccupied molecular orbit) with respect to
transport levels �electron and �hole, exciton dissociation and generation of free electron–hole pairs
is achieved
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After optical generation the ensemble of electrons and holes undergo the total
energy relaxation21 of �L C �H and establish a correspondingly lower chemical
potential.

In the steady state, the system resumes a stationary electron and hole occupation
in the conductors and also a stationary occupation of the Coulomb-coupled electrons
and holes (excitons) in the absorber, regardless of any rates for transitions between
the relevant energy levels. Provided the electron and hole conductors are spatially
separated, and electrons and holes do not interact, there will be no recombination
of excess carriers. Accordingly, no excess radiation resulting from recombination in
the leads will be emitted apart from their thermal-equilibrium photons. However,
due to the law of Kirchhoff, which states that spectral emission equals spectral
absorption, the absorber emits photons with a spectral distribution corresponding
to its excited state and its temperature. In the radiative limit, by analogy with solid-
state absorbers, the radiative balance in open circuit (without carrier extraction at
the contacts, and with omission of the photon contribution from the Universe, stars,
and Moon) is given by (see Sect. 4.2.3):

˝in
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c204�

3„3
.„!/2
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„!

kTSun
� 1

d.„!/ D 4�

Z 1

��

g

Soc.„!/d.„!/ : (5.81)

The general term Soc.„!/ represents the spectral photon flux emitted from the
absorber into the solid angle 4� . The expression above contains the spectral
emissivity (which equals the spectral absorption, including a possible Stokes shift)
and the occupation and transition probabilities of initial and final states of each of
the involved levels. The optical threshold energy ��

g for absorption/emission defines
the lower limit of the photon energy, whereas the upper limit for contributions to
the spectral flux S.„! ! 1/ is included in the spectral absorption/emission and
its decay with increasing photon energy.

Our approach resembles the one used for the radiative limit in Chap. 4 for an
ideal semiconductor absorber, and it would yield the same result for the maximum
splitting of the quasi-Fermi levels, provided that the independent-electron picture
and the stationary-state quasi-Fermi level ansatz were valid.

In organic absorbers, be it molecular dyes or extended polymers, in contrast to
inorganic ones, electrons are often correlated and the comprehensive formulation of
their behavior is much more complicated. Even for only two electrons, it does not
allow for an analytical solution like the quasi-Fermi approach (see [16]).

Compared with the ideal electronic band absorber in which the optical threshold
�g simultaneously acts as the electronic threshold, in the organic absorber–lead

21In order to avoid immediate recombination of excited electrons and holes in the absorber
molecule, electrons and holes are transferred with energetic relaxation, �L (for electrons from
the LUMO level) and �H (for holes from the HOMO level) to their respective transport levels
(�el;cond, �hole;cond).
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Fig. 5.28 Maximum amount of usable solar photons with optical threshold of energy �opt and
same amount after Stokes down-shifting by .�H C�L/ to �el

system, the optical threshold also governs the absorption of solar photons, but the
generated photoexcited species are transferred to a substantially lower electronic
level that enters into their chemical potential. The system behaves like a small-
band-gap system illuminated with the lower total photon flux ��.„! 
 �opt/ of an
absorber with corresponding higher band gap �opt (Fig. 5.28).

5.5.2 Barriers with Organic Absorbers

5.5.2.1 Dye-Sensitized Solar Cells

A typical example of a solar cell composed of a molecular absorber and appropriate
conductors for electrons and holes, is the dye-sensitized diode shown schematically
in Fig. 5.29 [17, 18]. The absorber consists of dye molecules attached to the surface
of an optically transparent and extremely porous metal oxide. This highly fractal
configuration with a huge surface area (up to a factor of 103 larger than the size of
the corresponding planar surface) provides for sufficient total concentration of the
dye absorber and equivalent high absorption.

The large-band-gap porous metal oxide (e.g., TiO2) is strongly n-doped with
negligible hole contribution to charge transport, and serves as electron conductor to
the front contact. Its fractal structure is, of course, beneficial for the loading of the
system with a suitable concentration of absorber molecules. The electron transport,
however, is limited in the porous network by percolation.

As a hole conductor nicely penetrating the porous network and giving holes
electronic access to dye molecules, an electrolyte (redox system) is commonly
chosen, in which the exchange of photoexcited holes from the absorbing dye is
achieved by a ‘reduction’ of the electrolyte. The corresponding ‘oxidation’ of the
electrolyte is accomplished by injection of electrons from the metal rear contact.

This type of solar cell may also be classified as a photo-electrochemical solar
cell, due to the fact that a liquid conductor is involved (see Sect. 5.6) [19].
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Fig. 5.29 Schematic structural design of a dye-sensitized solar cell. Behind the transparent
electrode at the light entrance side, an electron conductor (high band gap) is ‘doped’ with a dye that
absorbs the solar photons, creates a photoexcited state (exciton), and transfers the excited electron
and the excited hole to the respective conductors across which they are transported to the front
(electron) and rear contact (hole)

5.5.2.2 Organic Bulk Junction Cells

The simplest organic bulk diode contains one type of absorber sandwiched between
two metal contacts with different work functions to attain the necessary asymmetric
behavior. In organic matrices, in contrast to inorganic semiconductors, the incoming
photons do not usually generate free electrons and holes, but rather create excitons
[20]. These excitons either decay geminately,22 or in non-radiative transitions or,
after been dissociated, contribute as free electrons and holes to a current towards the
boundaries of the absorber, where contacts provide access to the ensemble in terms
of the chemical potential of electrons and holes.

For dissociation of the excitons, the dissociation energy of this Coulomb-bound
quasi-particle, with the aim of getting a free electron and a free hole, is provided by
a reduction in their energy separation and is hence accompanied by a lowering of
the quality of the excited state.

Here, we consider the dissociation of an exciton by tunneling in the presence
of extreme gradients in the conduction and valence band (r�C, r�V). In forward
direction, the mode in which solar cells operate, this effect reduces to a large extent
the photoinduced splitting of the quasi-Fermi levels. Moreover, only in short-circuit
mode where maximal gradients in CB and VB occur, and the output power vanishes,
does this approach based on tunneling work (see Fig. 5.30).

Another option for using organic bulk absorbers is based on the mixture
of two different bulk materials A and B, one with p-type, the other with n-

22Geminate recombination refers to the ‘immediate’ back reaction of species, e.g., weakly bound
photogenerated electrons and holes (excitons) in terms of a radiative transition to the ground state.
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Fig. 5.31 Geometrical arrangement of organic solar light absorbers with donor and acceptor
behavior. Mixture of comparatively small-scale clusters (left), bilayer arrangement (center), and
interpenetrating network composed of two different absorbers with optimized transport properties
for electrons and holes (right)

type behavior. Needless to say, the p- and the n-type regimes enable hole and
electron transport. The geometrical arrangements of such mixed structures, called
hetero-bulk absorbers, can be designed in three different types [21]: a mixture of
small-scale regimes (dual molecule approach), a bilayer configuration (a sequence
of two homogeneous absorber layers connected in optical series, each with its own
individual band gap), and an interpenetrating network of the two different absorbers
(see Fig. 5.31).

At each of the interfaces between bulk A and bulk B, a heterojunction is formed
at which exciton dissociation occurs in conjunction with the energetic relaxation of
the originally photo excited state. Depending on the lateral extent of the phases and
the corresponding doping levels, the space-charge region is fully or only partially
developed.
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Fig. 5.32 Schematic dissociation of excitons and charge separation (injection) in the presence of
a bulk material with appropriate energy level of the given transport path

Figure 5.32 shows a section of the band diagram at the interface of two bulk
regions with the options for exciton dissociation by relaxation of electrons at the
step-down of the conduction band or holes at the step-up of the valence band.
However, it is questionable to treat these processes using a traditional band diagram
since in polymers and in molecular matter the independent-electron picture often
cannot be applied.

In the course of solar-light conversion to electrical output power in organic
devices, several restrictions arise with regard to the ideal processes. Due to
molecular behavior, the absorption of solar photons and the resulting generation of
photoexcited states (excitons) is not only limited by the thickness of the absorbing
medium [the necessary thickness is dabs 
 1=˛.„!/] but also by the decrease in
the absorption coefficient for photon energies sufficiently higher than the optical
threshold.

The collection of photoexcited excitons is governed by their diffusion length
LD; exc, which is usually considerably smaller than the necessary thickness for
photon absorption.23 Consequently, excited states generated beyond the regime of
the diffusion length are hardly collected.

The conversion of excitons (dissociation) to mobile charges requires a downward
energy step, and the subsequent transport of electrons and holes in terms of
mobilities is reduced due to low wave-function overlap in molecular structures. In
addition, the transport paths turns out to be percolative. Both, the latter two effects
require a non-negligible drop in chemical potential of the electron–hole ensemble.

23Although the absorption coefficient of molecular dyes generally may exceed those of semicon-
ductors the effective thickness of dye layers—due to low exciton diffusion lengths—is usually
chosen much lower so that full absorption A ! 1 might not be achieved.
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5.5.2.3 Summary for Organic Solar Light Converters

Illuminated organic diodes are somewhat analogous to inorganic solar cells. They
are characterized by their relation of current density versus voltage, showing the
characteristic features in the fourth quadrant of an I–V curve. Similar quantities,
such as open-circuit voltage, short-circuit current density, filling factor, and maxi-
mum power point efficiency can be determined. In contrast to inorganic devices, an
analytic derivation of the j–V relation for organic diodes is not available so far. Here
we only have discussed the qualitative similarity to the inorganic representatives.

5.6 Photo-Electrochemical and Photochemical Cells

Devices combining absorbers with liquids are generally included among photo-
chemical and photo-electrochemical cells. In these devices the function of ‘direct’
solar light conversion is based on only one type of majority, namely photogenerated
holes, for which a suitable sink is formed by the liquid. In the language of chemists,
the injection of holes into the liquid (identical with the extraction of electrons)
reduces the electrolyte.

The advantages of liquid conductors are their excellent suitability for penetrating
practically any type of absorber geometric network. Handicaps may arise from
incomplete wetting of the surface, from necessary overpotentials24 for appropriate
current densities at the absorber–liquid interface, and from stability issues of the
electrolyte in conjunction with the absorber.

5.6.1 Photo-Electrochemical Cells

A schematic energy diagram of a photo-electrochemical diode is given in Fig. 5.33.
With this scheme, we may also explain the processes in a dye-sensitized solar cell
(see Sect. 5.5.2 and in particular p. 151).

The transition of a photoexcited hole from the valence band of the n-type
absorber to the electrolyte level where the conversion of the hypothetical species
S� ! S occurs requires an overpotential �1 for non-negligible current densities.
Analogously, on the metal side, where an electron from the metal (often Pt with a
beneficial catalytic effect) flops to the electrolyte level S ! S�, another overpo-
tential �2 is established. The transport of species S� from their point of generation
(source), namely at the interface of the illuminated semiconducting absorber with

24Overpotential (�i) designates the departure of the potentials of an electrode system from its
chemical equilibrium value. Such a departure is required to create a net chemical reaction; the
larger (�i) the larger the reaction rate.
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Fig. 5.33 Schematic band/energy level diagram of an electrochemical cell. Illumination of the
semiconductor provides for the injection of holes into the electrolyte (equivalent to electron
transition from a level in the electrolyte to the valence band of the semiconductor), the transport of
a hypothetical species (S) from the semiconducting anode towards the metal cathode by diffusion
(gradient in concentration of S), and subsequent ‘oxidation’ of S at the cathode by transition of an
electron from the metal (S C e� ! S�)

the liquid, towards the metal electrode occurs by diffusion. Frequently, the transport
of these ions requires a gradient of their concentration and thus a drop in chemical
potential of the species S� which adds to the two overpotentials �1 and �2 to
produce an internal loss that reduces the achievable splitting in Fermi levels on
the right- and left-hand sides at the outer electrical contacts (loss in the external
difference of the electrochemical potential eVext).

5.6.2 Photochemical Cells

The working principle of photochemical cells is identical to that of photo-
electrochemical cells except that they are operated in short-circuit mode, supplying
the complete achievable photogenerated difference in chemical potential to
excited species for the production of chemically stable products, one type at the
semiconductor side (called the anode) and its counterpart at the metal side (called
the cathode). To separate the two species in order to avoid the back-reaction, the two
sides of the electrolyte are separated by a diaphragm. (A tremendous bottleneck for
technical operation of this scheme is the competition between rates for hole transfer
from the absorber to the liquid and the rates of decomposition of the absorbing
semiconductor. So far, for water splitting by absorbers with reasonable band gaps
the decomposition has always been the predominant effect.)
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5.7 Optical Absorption in Real Systems

5.7.1 Absorption Coefficient and Lambert–Beer Law

The spectral coefficient ˛.„!/ for absorption of photons in solid matter describes
the attenuation of the photon flux ��.x/ along the propagation length x in the linear
approach

� d��.x/

dx
D ˛��.x/ (5.82)

known as the Lambert–Beer law (see Sect. 4.2.6.1). The absorption coefficient
˛.„!/ can be derived from Maxwell’s equations in terms of material properties
such as the dielectric function ".!/, magnetic permeability 	.!/, and electrical
conductivity �.!/, independently of the amplitudes of the electric and magnetic
field strengths E and H. The combination of the two equations for the formulation
of the spatiotemporal behavior of E.x; t/ and H.x; t/, e.g., for the electric field
strength, yields

r � .r � E/ D r .r�E/ ��E D �"0"	0	d2E
dt2

� 	0	� dE
dt

: (5.83)

The solution for harmonic filed strengths is a complex QE.x; t/ whose imaginary part
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˛� is the attenuation factor for the amplitude as a function of x (see Appendix A.1
for details). The square of the electric field corresponds to the photon flux and
accordingly the optical absorption coefficient ˛.!/ D 2˛�.!/, given by
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The solution of the Lambert–Beer relation for the local photon flux ��.x/, here
in a one-dimensional representation with x denoting the direction of photon
propagation, is related to the flux �0 D ��.x D 0/ coupled in at the entrance of
the absorbing medium by

��.x/ D �0 exp
� � ˛.!/x� : (5.85)



158 5 Real Photovoltaic Converters

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

spatial coordinate x arb.un.

n
x

ar
b.

un
.

0

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

spatial coordinate x arb.un.

g
x

n
x

x

Fig. 5.34 Decay of a monochromatic photon flux � .x/=�0 generating the spatial excess density
�n.x/ versus depth x of propagation into an absorber for different absorption coefficients ˛
(left) and integrated absorption of monochromatic photons

R
�n.x/dx versus absorber thickness x

(right) reflecting the optical generation rate g.x/ Ï jsc, as well as short-circuit current density jsc

The local rate for generation of photoexcited species results from the spatial decay
of the flux ��.x/ within the area A oriented perpendicularly to the propagation:

g.x/ D �Ad��.x/

dx
D A˛.!/��.x/ : (5.86)

We get the total number of generated species (total generation rate) in the volume
V D Ad from the above relation by integrating over the thickness d :

g.d/ D
Z d

0

g.x/dx D A

Z d

0

˛.!/��.x/dx

D A

Z d

0

˛.!/�0 exp
� � ˛.!/x�dx D A�0

n
1 � exp

� � ˛.!/d �
o
:

(5.87)

This gives the total rate of generation g.x/ of photoexcited species, such as
electron–hole pairs or excitons (see Fig. 5.34).

5.7.2 Optimum Thickness of Absorber Layers

As a consequence of the thickness-dependent total photogeneration of electron–hole
pairs in a solar-cell absorber, an optimum value d� exists for which the product of
the short-circuit current density jsc (equivalent to the photocurrent density jphoto)
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and the open-circuit voltage Voc reaches a maximum value. The product jscVoc

contains the total rate of photogenerated charges. The short-circuit current density is

jsc �
Z d

0

�
1 � exp.�˛x/�dx ; (5.88)

whereas in the ideal case of negligible surface recombination at the front and rear
sides, the open-circuit voltage reads

Voc D kT ln

�
np

n0p0

	

; (5.89)

where the actual densities under illumination are assumed to distribute by suffi-
ciently efficient diffusion across the entire absorber thickness (here, normalized),
and we get the averaged excess carrier density

.n � n0/ D �n �
Z d

0

1

d

�
1 � exp.�˛x/�dx :

The short-circuit current density jsc.d/ saturates for large thicknesses d , and the
open-circuit voltage Voc.d/ vanishes for large d because the finite number of excess
charges are hypothetically smeared out across an infinite length, thereby decreasing
�n.d ! 1/ D 0. Here we have chosen p D p0. The individual magnitudes jsc

and ln.np=n0p0/ � Voc versus absorption length represented by the thickness d of
the absorber are displayed in Fig. 5.35, where we have chosen np D 106n0p0.
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Fig. 5.35 Averaged excess carrier density .1=x/
R
�n.x/dx Ï .�Fn.x/� �F/ D 	n.x/ (left) and

logarithm of product of electrons and holes ln
�
np=n0p0

�
Ï 	np.x/, representing the behavior

of the open-circuit voltage, versus absorber depth x (right). As the short-circuit current increases
with the number of absorbed photons, the open-circuit voltage (for ideally passivated front and
rear surfaces) decreases as a consequence of the increase in the volume/length across which the
photogenerated excess carriers are distributed
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Fig. 5.36 Product of short-circuit current and open-circuit voltage in terms of electron-hole
chemical potential 	np (in arbitrary units) which qualitatively represents output power (efficiency)
of an ideal solar cell versus absorber thickness for different absorption coefficients ˛. Each value
of ˛ requires a particular optimum absorber thickness (circles)

The product

jsckT ln

�
np

n0p0

	

D jscVoc ;

which is proportional to the electric output power density of a solar cell, assuming
for the sake of simplicity that the filling factor remains unchanged, is shown in
arbitrary units in Fig. 5.36. Here we observe the optimum thickness dopt D dopt.˛/

as a function of the absorption coefficient ˛.!/ for which we get the maximum
output power.

If we allow for non-negligible front- and rear-surface recombination, the behav-
ior of an optimum absorber thickness is qualitatively conserved. The quantitative
behavior depends on the resulting excess carrier profile which itself is governed
by the generation profile, surface recombination velocities, and minority-carrier
diffusion length.

5.7.3 Absorption of Semiconductors Versus Molecules
or Atoms

The absorption of photons in matter arises from transitions between occupied initial
electronic states and unoccupied final ones. The driving force for those transitions
is the electromagnetic field expressed as a vector potential that couples the wave
functions of the relevant states via the optical matrix element (for details see [22]).

In densely packed bulk solid matter, like semiconductors, and in contrast to the
situation for atoms or molecules, the steady-state solution of the energy eigenstates
of electrons yields energy bands with width of a few eV, whereas in atoms or
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molecules, due to the much lower number of individual sites, more or less discrete
energy levels exist for the electrons (see Fig. 5.37).

As a consequence of bands in dielectrics and semiconductors the energy regime
for the combined density of states spans a much broader energy scale than for
atoms and small enough molecules, such as those of commonly used dyes (see the
schematic representation in Fig. 5.38). By the Lambert–Beer law, the absorption
A.„!/ depends on the absorption coefficient ˛.„!/ according to A.„!/ D 1 �
exp

� � ˛.„!/d �. For solar light conversion, the absorption of appropriately thick
semiconductors in photon energy regimes sufficiently higher than the band gap
�g, reaches unity, i.e., A

�„! 	 �g
� ! 1, whereas in molecules, the absorption

for photon energies well above the LUMO–HOMO transition energy �LUMO–HOMO

decays to zero, i.e., A .„! 	 �LUMO–HOMO/ ! 0.
In addition, in semiconductors and dielectrics, due to the well-defined relation

of energy and wave vector, � D �.k/, electronic transitions initiated by photons
occur without or with change of electron/hole wave vectors, which are called
direct or indirect transitions respectively. In indirect transitions, the wave vector
�k necessary to fulfill momentum conservation is provided either by phonon
absorption or phonon emission. Both effects are controlled by the corresponding
phonon energy „!phon.�k/, which we find in the corresponding phonon dispersion
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Fig. 5.39 Electronic transition through absorption of a photon with band gap energy in a direct
semiconductor (left) and in an indirect semiconductor. The transition with band-gap energy in
an indirect semiconductor requires the supply of a specific �k from lattice vibrations (phonons);
indirect transition with phonon absorption (center), and with phonon emission (right)

relation!phon.k/. The participation of phonons makes the photon absorption process
much less likely than for a direct transition, and the absorption coefficients for direct
transitions are thus correspondingly higher than for indirect ones (by a factor of
about 102).

When the minimum energy separation of the valence and conduction bands,
i.e., the energy difference between the top of the valence and the bottom of the
conduction band are located at identical wave vector k, the semiconductor is said to
be direct. If the positions of VB maximum and CB minimum differ by a wave vector
�k, we are dealing with an indirect semiconductor (see Fig. 5.39). The distinction
between direct semiconductors with high absorption coefficients and indirect ones
with comparatively low absorption coefficients specifies solar-cell technology into
thin-film and thick-film approaches.

5.8 Equivalent Circuit of Illuminated Diodes

For reasons of completeness, we consider here the equivalent circuits of an ideal
diode and of a diode with losses due to non-radiative recombination of photoexcited
carriers (think of defects) and losses due to those initiated by non-ideal transport
properties of carriers (e.g., limited mobilities, or in other words, limited diffusion
coefficients, non-ideal contacts). The effect of non-radiative recombination in this
picture is represented by an additional current, bypassing the ideal diode in which
solely radiative recombination is possible. The bypass itself is represented by a
parallel resistor rp. This is a highly simplifying assumption, since non-radiative
recombination is not linearly associated with the voltage across the junction. The
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Fig. 5.40 Equivalent circuits of an illuminated ideal diode (left) and a diode with parallel and
series resistors representing losses by non-radiative recombination (rp) and non-ideal leads (rs)
(right)

transport losses in the leads to the junction correspond to a voltage drop which
would be better introduced by means of a series resistor rs

25 (Fig. 5.40).
The current-density–voltage relation of the illuminated ideal diode including the

photo current density jphot is (remember Sect. 4.2.4)

j D j0

�

exp
eV

kT
� 1

�

� jphot ; (5.90)

where current density j and applied voltage V are externally accessible parameters.
The resistors rp and rs are to be modified by an appropriate area A to express these
quantities in ohms. The external current density for the illuminated diode with the
loss terms is modified to

j D jD C jp � jphot : (5.91)

Introducing

VD D V �jrs ; jD D j0

�

exp

�
e.V � jrs/

kT

�

� 1
	

; jp D VD

rp
D V � jrs

rp
;

we arrive at

j D j0

�

exp

�
e.V � jrs/

kT

�

� 1
	

C V � jrs

rp
� jphot : (5.92)

We now examine the effect of the series and parallel resistors for comparatively
small departures from the ideal diode for which rs ! 0 and rp ! 1. In a formal

25The ‘resistors’ rp and rs are expressed in terms Ohm cm2, as in the sketches in Fig. 5.40.
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procedure we discuss the derivative .dj=dV / for boundary conditions V.j D 0/ D
Voc and for V D 0 D V.jsc/:
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(5.93)

Reorganizing this relation, we get

dV

dj
D rs C 1

1

rp
C j0e

kT
exp

�
e .V � jrs/

kT

� : (5.94)

For particular boundary conditions, such as open circuit or short circuit, we arrive at

dV

dj

ˇ
ˇ
ˇ
ˇ
jD0=VDVoc

D rs C rp

1C ej0rp

kT
exp

�
eVoc

kT

� � rs (5.95)

or

dV

dj

ˇ
ˇ
ˇ
ˇ
jDjsc=VD0

D rs C rp

1C ej0rp

kT
exp

�

�ejscrs

kT

� � rs C rp � rp : (5.96)

In the j–V relation, provided the departure of the loss resistors from ideal is small,
we see as inverse slopes the parallel resistance rp in short-circuit operation and the
series resistance rs in open-circuit mode (see Fig. 5.41).

Fig. 5.41 Current
density–voltage curve of an
illuminated diode with
parallel and series resistors rp

and rs. Their influence on the
j –V curve emerges as
derivatives .dV=dj / at jsc

and Voc, respectively

j

V

jsc

Voc

(dj/dV) ~ (1/rp)

(dj/dV) ~ (1/rs)
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5.9 Status of Cell and Module Efficiencies

Table 5.1 summarizes the efficiencies of laboratory cells and of modules, to
some extent even commercially available (data mainly collated from [23]). This
survey lists photovoltaic cells based on crystalline silicon, III–V compounds,
inorganic thin-film absorbers, such as thin silicon and polycrystalline compound
semiconductors (chalcogenides, chalcopyrites, etc.), as well as organic solar cells
and multijunction devices.

Table 5.1 Efficiencies of best solar cells under illumination by global AM1.5 spectral distribution
with total 100mW=cm2 and ambient temperature T D 25 ıC

Type of cell Area (cm2) Efficiency (%) References

Silicon

 Monocrystalline Si (Perl cell) 4.0 25.0 [23]

 Monocrystalline Si 1.0 20.4 [23]

 Monocrystalline Si (artificial thin absorber 45�m) 4.0 16.7 [23]

III–V cells

 Monocrystalline GaAs 1.0 26.4 [23]

 Multicrystalline GaAs 4.0 18.4 [23]

 Monocrystalline GaAs (thin film) 4.0 28.1 [23]

 Monocrystalline InP 4.0 22.1 [23]

Amorphous or micro-/nanocrystalline silicon

 a-Si:H (single junction, light soaked) 1.0 10.1 [23]

 Nanocrystalline Si (single junction) 1.2 10.1 [23]

Chalcopyrites/chalogenides

 CuInGaSe2 0.5 20.3 [24]

 CuInGaS2 0.5 12.6 [25]

 CdTe 1.0 16.7 [23]

 Cu2ZnSn(Se,S)4 0.43 9.6 [26]

Photochemical cells

 Dye-sensitized cell 1.0 10.4 [23]

Organic absorber solar cells

 Organic polymer cell 1.0 8.3 [23]

Multijunction cells

 GaInP/GaAs 4.0 30.3 [23]

 GaInP/GaAs/Ge 4.0 32.0 [23]

 GaAs/CIS 4.0 25.8 [23]

 a-Si:H/�c-Si 14.0 11.7 [23]

 Organic tandem absorber 1.0 9.8 [27]

 InGaP/GaAs/InGaAs (343 suns concentrated) 1.0 41.3 [23]



166 5 Real Photovoltaic Converters

References

1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)
2. B. Sapoval, C. Hermann, Physics of Semiconductors (Springer, Berlin, 2003)
3. R. Enderlin, N.J.M. Horing, Fundamentals of Semiconductor Physics and Devices (World

Scientific, Singapore, 1997)
4. R. Sauer, Halbleiterphysik (Oldenbourg, München, 2009)
5. H.G. Wagemann, H. Eschrich, Grundlagen der photovoltaischen Energiewandlung (Teubner,

Stuttgart, 2010)
6. W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952); R.N. Hall, Phys. Rev. 87, 387 (1952)
7. J.S. Yuan, J.J. Liou, Semiconductor Device Physics and Simulation (Plenum, New York, 1998)
8. P. Würfel, The Physics of Solar Cells (Wiley-VCH, Weinheim, 2009)
9. D.V. Morgan, R.H. Williams, Physics and Technology of Heterojunction Devices (P. Peregrinus

Ltd, London, 1991)
10. W. Schottky, Zeitschr. Physik 118, 539 (1942)
11. H.K. Henisch, Semiconductor Contacts (Clarendon Press, Oxford, 1984)
12. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)
13. G. Yu et al., Science 270, 1789 (1995)
14. M. Granström et al., Nature 395, 257 (1998)
15. K. Yoshino et al., IEEE Trans. Electron Dev. 44, 1315 (1997)
16. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1995)
17. U. Bach et al., Nature 395, 583 (1998)
18. M. Graetzel, MRS-Bull. 30, 23 (2005)
19. J. Kroon, A. Hinsch, Dye-sensitized solar cells, in Organic Photovoltaics, ed. by C. Brabec

et al. (Springer, Berlin, 2003)
20. B.A. Gregg, J. Appl. Phys. 93, 3605 (2003)
21. S.R. Forest, MRS-Bull. 30, 28 (2005)
22. C. Hamaguchi, Basic Semiconductor Physics (Springer, Berlin, 2001)
23. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 19,

565 (2011)
24. P. Jackson et al., Prog. Photovolt. Res. Appl. 19, 894 (2011)
25. S. Merdes et al., Sol. Energy Mater. Sol. Cells 95, 864 (2011)
26. T.K. Todorov et al., Adv. Mater. 22, E156 (2010)
27. C.L. Uhrich, R. Meersheim, T. Mueller, F. Lindner et al., Proc. SPIE8477, Organic Photo-

voltaics XIII, 847705 (2012)



Chapter 6
Advanced Concepts: Beyond
the Shockley–Queisser Limit

The main difference between the theoretical limit of solar energy conversion, like
that of a Mueser engine at maximum concentration (see Sect. 4.1.4, where we found
�Mues D 0:86) and the Shockley–Queisser efficiency, representing the radiative limit
of a single-gap absorber illuminated by sunlight without concentration (�SQ D 0:29,
[1]) results from

• the excess energy of photons „! > �g which is converted into heat,
• the amount of photons „! < �g not absorbed,
• the low photon solid angle ˝in D ˝Sun D 5:3 � 10�6 of non-concentrated

sunlight1 compared to the solid angle for emission ˝out (e.g., for flat absorbers
with highly reflecting rear contacts ˝out D 2�)

Accordingly, amongst the many technological attempts to increase the optoelec-
tronic properties of absorber semiconductors, such as reduction of bulk and surface
recombination rates, two issues have been regarded as the most promising options
for increasing the performance of photovoltaic solar-light conversion:

• Use of photons with energy above the optical band gap („! > �g).
• Stronger trapping of light in the absorber.

6.1 Concentration of Sunlight

The departure from thermal equilibrium by photoexcitation is commonly formulated
using the quasi-Fermi-level approach. This leads to a logarithmic dependence of
the chemically usable potential of species versus their concentration, which in

1Since the efficiency of ideal photovoltaic converters rises logarithmically with the absorbed
photon flux (� lnŒ��=��;0� � lnŒ.np/=n0p0�), the maximum achievable �� which corresponds
to˝in D ˝out should be applied to the absorber to get nominally the highest conversion efficiency.

© Springer-Verlag Berlin Heidelberg 2015
G.H. Bauer, Photovoltaic Solar Energy Conversion, Lecture Notes in Physics 901,
DOI 10.1007/978-3-662-46684-1_6
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turn depends on the excitation flux fed to the absorber. Thus the harvesting and
the performance of conversion of sunlight in an absorbing system depends on the
light flux departing the system from thermal equilibrium. The enhancement of the
light flux leads to a rise of conversion performance, already exemplified by the
logarithmic behavior of the open-circuit voltages versus light flux in traditional solar
cells, viz.,

Voc D kT ln

�
np

n0p0

	

;

as discussed in Sects. 4.2.3 and 5.1.4, where n and p are the steady-state concentra-
tions of photoexcited electrons and holes.

6.1.1 Imaging Concentration of Sunlight

An easy concept for the increase of the flux of sunlight is to focus direct solar
radiation by passive optical elements such as lenses or mirrors. It goes without
saying that these do not alter the original spectral distribution of photons. Here we
distinguish between one- and two-dimensional concentrators (n D 1 or n D 2),
for which we find the maximum theoretical concentrationCmax;n by reversion of the
spatial dilution of the light propagating from the Sun’s surface to the Earth

Cmax; n D
�
dSE

RSun

�n
;

which yields Cmax.n D 1/ D 217 and Cmax.n D 2/ D .217/2 D 4:7 � 104.

6.1.2 Non-imaging Concentration of Sunlight

Non-imaging concentration of sunlight is based on geometrically simpler, and hence
cheaper structures than focussing optical component, namely flat or shaped mirrors,
or strongly scattering surfaces at the light entrance side or at the rear surface of the
absorber.

One option of a non-imaging concentration, a ‘linearly’ shaped spherically
truncated pyramid which concentrates the incoming photons from area Ain into area
Aout is schematically displayed in Fig. 6.1. On the right-hand side, Aout, has been
chosen too small to allow all the photons entering Ain to pass through. Only those
photons within Aacc are coupled to the outlet area where an absorber/converter is
located. The acceptance area Aacc is determined by identifying the contour within
which the photons are accepted for guidance through the concentrating device. This
is called the edge-ray principle (for further details, see [2]).
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Fig. 6.1 Schematics of non-imaging solar light concentrators. Concentration factor determined by
outlet and inlet (left) and by acceptance area Aacc circumvented by the edge ray line (right)

However, non-imaging light concentration generates a spatially inhomogeneous
light flux which results in a spatially inhomogeneous generation of excess carriers
and similarly in general produces an inhomogeneous excess density. This non-
homogeneous distribution is less favorable than a homogeneous one, because the
mixing of intensive thermodynamic variables may create additional entropy.2

In a simple exemplary approach, we compare the chemical potential of a
homogeneous overall excess carrier density n with a spatial variation of this density
in regions with n C � and n � �. Comparing the chemical potential 	nm of the
non-mixing system with the value 	m for the mixing one, we find

	nm D kT ln

�
n

n0

	

; (6.1)

whereas

	m D 1

2
kT

�

ln

�
nC�

n0

	

C ln

�
n ��

n0

	�

D 1

2
kT ln

�
.nC�/ .n ��/

n20

	

;

(6.2)

2In solar thermal collectors, e.g., inhomogeneous light fluxes generate, of course, equivalent
inhomogeneous temperature distributions, which in turn lead to a mixture of intensive variables
and to generation of entropy.
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and hence,

	m D kT ln

2

4

s
n2 ��2

n20

3

5 D kT ln

2

4 n

n0

0

@

s

1 � �2

n2

1

A

3

5 < 	nm : (6.3)

For any value�, the exploitability of the mixing systems turns out to be lower than
that of the homogeneous one.

6.1.3 Non-imaging Concentration with Stokes
Shift/Fluorescence Collectors

6.1.3.1 Principle of Light-Trapping and Light-Guiding in Fluorescence
Collectors

Solar fluorescence collectors (flucos) [3, 4] are made of absorber molecules (dye)
incorporated in a dielectric matrix transparent to most solar radiation (near-UV to
near-IR photons). Geometrically, they consist of thin plates with comparatively large
areas exposed to the solar radiation and small side surfaces through which the dye-
converted radiation may be coupled out orthogonally to the incoming light (see
Fig. 6.2).

In the fluco a particular energy regime of the solar photons „! is absorbed by the
dye and transferred by Stokes shift to fluorescence light „!� with somewhat lower
photon energies (see schematic absorption and emission coefficients displayed in
Fig. 6.3).

Fig. 6.2 Schematics of a solar fluorescence collector. Photons of a particular energy are absorbed
by dye molecules and re-emitted after Stokes shift to lower frequency. The emitted photons—
except those propagating in the angle regime of the escape cone (see Fig. 6.4)—are reflected at
the upper and lower surface and guided to the edge of the fluco. Photons of energies beyond
the absorption regime don’t ‘feel’ the presence of the dye and propagate like in dielectrics
(transmission and reflection at surfaces)
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, absorptionemission

overlap

* photon energy

Fig. 6.3 Schematic spectral absorption and Stokes-shifted emission of photons in a fluorescence
collector; as a consequence of the overlap of emission and absorption spectrum a particular fraction
of the fluorescence photons are re-absorbed on their way to the edge of the collector. Due to
the dye’s quantum efficiency (Qdye < 1) and because of the probability for re-emitted photons
to be scattered into the escape cone another fraction of the re-absorbed photons are lost for the
conversion in an externally attached solar cell

Fig. 6.4 Emission of Stokes-shifted photons in a fluorescence collector (fluco), total reflection of
photons at front and rear surface (light entrance area Ain), propagation in the angle regime outside
the escape cone (˛ > ˛c), and guiding to the fluco edge, where these photons are fed to solar cells
with comparatively small area Aout

Due to the contrast between the refractive indices of the fluco ( Qnfluco) and its
environment (in most cases air with nenv D nair � 1:0), photons propagating
across the interfaces, such as solar photons to be coupled into the fluco, but
also fluorescence photons generated in the fluco to be transmitted to a solar cell
attached at the edge of the fluorescence collector, suffer from reflections. According
to Maxwell’s equations, the coefficients for reflection r and transmission t for
amplitudes of electric and magnetic field components are given in terms of the
(complex) refractive indices Qni of the two adjacent phases by (see Appendix A.2)

r D Qn1 � Qn2
Qn1 C Qn2 ; t D 2 Qn1

Qn1 C Qn2 :
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For photon propagation from the dense optical phase, here from the fluco with nfluco,
to the lower-refractive phase of the environment, e.g., with n0, total reflection occurs
for angles

' 
 ˛c D arcsin

�
n0

nfluco

	

;

where ˛c is the critical angle,3 and this keeps photons propagating within the fluco
until they see the angle ' 0 D 90ı � ' � ˛c, e.g., at the edge perpendicular to the
light entrance surface, and escape towards a solar cell (see Fig. 6.4).

6.1.3.2 Performance and Limits for Solar-Light Conversion
in Fluorescence Collectors

The spectrally selective fluorescence light emitted from the edge of the fluco and
fed to a solar cell with appropriate optical band gap results only from that particular
wavelength regime of the solar light in which the dye efficiently absorbs photons.
The fluco photons originate from the input of the solar radiation across the area Ain

much larger than the area Aout through which the light is coupled out to the solar
cell. This increase in outgoing photon flux against incoming photon flux, which
means concentration of light, even diffuse light, is possible by virtue of Stokes shift
between incoming and outgoing photons.

The maximum enhancement of the photon flux into the fluco [5, 6] is generally
found using a quantum approach which is based upon the balance of photons in the
radiative limit; this upper limit results from thermodynamic restrictions and cannot
be derived from geometrical optics.

In matter, absorption and emission of photons are strongly coupled to one
another.4 By the principle of reversibility, this coupling allows for the formation
of a stationary state of matter under illumination by forward (absorption) and back
reactions (emission).

We apply the description already used in Sect. 4.2.3 for emission (into the solid
angle ˝out D 4�) of the spectral photon flux ��.!/ from matter and pushed out at

3The comprehensive derivation of the total reflection includes the distinction of the direction of
photon polarization with respect to the orientation of the reflecting surface.
4In molecular systems electrons undergo optical transitions for absorption and emission from
and to electronic levels, to which only different vibrational and rotational terms are added. After
absorption of a photon the electron in the excited state usually undergoes a relaxation to a lower
vibrational energy level from which it may return to the initial electronic level by emission of a
photon with lower energy compared to the energy of the absorbed photon.
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temperature Tabs and governed by the chemical potential 	 [6]:

��.!/ D ˝out

c204�
3„3

.„!/2

exp

�„! � 	
kTabs

�

� 1

D 1

c20�
2„3

.„!/2

exp

�„! � 	

kTabs

�

� 1
; (6.4)

from which we extract the chemical potential

	 D „! � kT ln

�

1C .„!/2
c20�

2„3��.!/
	

D „! � kT ln

�

1C .„!/2
ˇ��

	

(6.5)

(with abbreviation ˇ D c20�
2„3).

We now suppose two hypothetical systems, one operating with optical threshold
�1 D „!1, which we dedicate to the absorption of solar light in the fluco (of course,
also for emission) characterized by the flux ��;1, and a second one at the very same
temperature T , emitting the flux ��;2 with Stokes-shifted �2 D „!2 < „!1, and let
them interact with one another. In the steady state their chemical potentials are at
best equal 	1.��;1// D 	2.��;2/. We express this equality in terms of the equation
above to obtain

„!1 � kT0 ln

"

1C .„!1/2
ˇ��;1.!/

#

D „!2 � kT0 ln

"

1C .„!2/2
ˇ��;2.!/

#

: (6.6)

We then arrive at

exp

�„!1 � „!2
kT0

�

D
1C .„!1/2

ˇ��;1
.!/

1C .„!2/2
ˇ��;2

.!/

:

After a little rearrangement and the recognition that the flux emitted from system 1
has to balance the flux from the Sun ��;1 D �Sun, we finally obtain

Cmax; fluco

D ��;2

��;1

D
�„!2

„!1
�2 �

1C ˇ
��;1

.„!1/2
�

1 � exp

�„!1 � „!2
kT0

��	�1
exp

�„!1 � „!2
kT0

�

:

(6.7)
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For regular sunlight fluxes ��;1 D �Sun, and even for concentrations of sunlight up
to about 100 suns equivalent, ˇ��;1= .„!1/2 < 1, and we approximate

Cmax;fluco �
�„!2

„!1
�2

exp

�„!1 � „!2
kT0

�

D
�„!2

„!1
�2

exp

�
�.�Stokes shift/

kT0

�

:

(6.8)

However, in the fluco, the concentrated fluorescence light towards the exit area is
additionally modified

• by incomplete absorption of solar photons („!1) as they propagate along the path
length d in the fluco, which yields the factor,

˚
1 � exp

��˛dye.„!1/d
��
< 1 ;

• but also by the internal quantum yield of the dye �� < 1 for conversion of solar
light („!1) into fluorescence photons („!2 ), by elastic scattering of fluorescence
photons originally propagating outside the escape cone back into it, and last but
not least by absorption of fluorescence photons by the dye and subsequent non-
radiative relaxation of excited dye molecules, which contributes to incomplete
‘photon recycling‘; those losses can be quantified by a factor ��:

��� D
n
1� exp

��˛dye.„!2/l
� o
���

� ;

where l denotes the actual path length of the fluorescence photons ‘zigzagging’
in the collector.

A theoretical approach for a single-stage fluorescence collector with ideal
conversion of solar photons to luminescence photons including the balance of the
etendue [7–9] (radiance input and output) yields an efficiency close to the Shockley–
Queisser limit (shown in Fig. 6.5 and discussed in Sect. 4.2.5, and [1]).

Fig. 6.5 Efficiency � of a
fluco coated with c-Si
absorber versus photon
energy for different ratios of
etendue of photons in and
out: "in="out D opt: and
"in="out D 100 (see [8, 9] of
Chap. 5) compared with the
spectral Shockley–Queisser
limit [1] 0.8 1 1.2 1.4 1.6 1.8 2

photon energy eV

0.1

0.2

0.3

0.4

ycneiciffe

S-Q-limit

c-Si + fluco
in/ out= 100

c-Si + fluco
in/ out = opt.
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In essence, for the characterization of real flucos where—amongst the beneficial
effect of light concentration—we have to consider the particular spectrally selective
and incomplete absorption of solar photons. In addition we have to regard the
imperfect transformation of the incoming solar light to lower photon energies for
the generation of fluorescence light, the elastic as well as inelastic scattering of
solar and fluorescence photons by the dye in the dielectric matrix imbedding the
dye, and also scattering at imperfect (rough) surfaces of this matrix.

6.1.4 Optical Design for Increase of the Photon Density
in Matter

The photon density in matter and likewise the degree of photons available
for exploitation is governed not only by incomplete absorption A D 1 �
exp .˛ .„!/ d/ < 1 but equivalently by incomplete coupling of photons to the
absorber resulting from reflection. As a consequence of the contrast in refractive
indices between two media, e.g., air and absorber, a substantial fraction of photons
may be reflected unless anti-reflection strategies are applied.

The reflection coefficient for the amplitude (rampl) of an electromagnetic wave
is found by considering the electric field strength propagating across an interface
between materials with (complex) refractive indices Qn1 and Qn2 (see Appendix A.2
and see footnote 3 in Sect. 6.1.3.2). This leads for perpendicular incidence on the
absorber to

Qrampl D Qn1 � Qn2
Qn1 C Qn2 ;

whence the reflection factor for the photon flux will be the square of this magnitude,
viz.,

r� D � Qrampl
�2 D

� Qn1 � Qn2
Qn1 C Qn2

�2
:

For a typical absorber like c-Si with real part of the refractive index in the near IR-
range n2 � 3:5, one gets a reflection factor of the photon flux for normal incident
illumination of r� D .2:5=4:5/2 � 0:31, implying that only 69 % of the light
incident on the absorber would be coupled in, an entirely unacceptable situation. For
this reason, anti-reflective (AR) films are generally used to coat the absorber. These
exhibit a particular combination of spectral refractive indices and thicknesses which
allows most solar photons with energies above the band gap to be wave-optically
fed to the absorber medium.

In addition to AR coatings, specific surface contours are prepared, such as
comparatively large scale (mm) 2D regular or random sized pyramids, or inverted
pyramids, 1D grooves, etc. to ‘scatter’ that part of the solar light that is reflected
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Fig. 6.6 Scattering of solar light at absorber entrance side with rough surfaces. 1D or 2D regular
or inverted pyramids (left) and 1D or 2D grooves (right) increase absorption lengths and decrease
reflection losses

Fig. 6.7 Comparison of propagation of photons (ray picture) coupled into an absorber with ideally
flat surface (left) and with optimum rough light entrance surface (right)

at first contact with the device back towards the surface again in order to provide
another opportunity to be coupled in (see Fig. 6.6).

Another artificial increase in photon propagation length at the front and/or rear
surface can be obtained by ideally randomized photon scattering into the solid angle
of 2� , facilitated by small scale rough surface or interface contours. Due to the
absorption of photons, the flux � .x/ and the total rate of photoexcited species
g.d/, be they electron–hole pairs or excitons, only asymptote towards the maximum
achievable values of initial flux �0 and total possible accumulated generation rate g0

� .x/

�0
! 0 ; or g.d/ ! g0 ;

with a strong dependence on the absorption coefficient ˛.!/, and on the length d
of the path the photons travel in the absorber. The photon path length d is usually
an unambiguous quantity, since we consider only one direction of light propagation
in the absorbing medium. However, when front or rear surfaces of the absorber are
strongly scattering, photon propagation becomes randomly oriented and the average
path length increases, whereupon the accumulated generation rate g.d/ also rises
(see Fig. 6.7).

From geometrical optics in conjunction with statistics, the upper limit for the
increase in effective absorption lengths to be achieved by ideal scattering into
the 2�-solid angle (Lambertian type of scattering) at the front as well as at the
side amounts to a factor of 4n2 (see [10] and Appendix C). In Fig. 6.8, the
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Fig. 6.8 Normalized
absorbed photon flux versus
absorption length in absorbers
with flat and with ideally
rough surface (optimum
scattering). The increase in
effective absorption length is
governed by the absorber
refractive index n
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Fig. 6.9 Ratio of absorption
of photons in matter with
ideally scattering surfaces
with Fscatt D
LogŒexp.�n2˛d/=exp.�˛d/�
(Lambertian scattering) as
compared with a flat surface
plotted against absorber
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refractive indices n
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accumulated generation rate g.d/—equivalent to the absorbed photon flux—for
maximum random scattering versus absorber thickness is sketched for different
refractive indices n D 2–4. For comparison, the absorbed flux is displayed for
perpendicular propagation through a flat surface without scattering.

The factor Fscat for the increase in total generation by scattering surfaces versus
absorber thickness d as compared with a flat surface is shown in Fig. 6.9.

An even greater light-trapping effect has been proposed by combining random-
ized scattering surfaces and spectrally selective filters [11].

6.1.5 Photonic Crystal Stop Gaps to Reduce Luminescence
Emission

A further so-called ‘third generation’ approach aims to reduce the emission
of luminescence radiation which, in the Shockley–Queisser limit, balances the
incoming and outgoing photon fluxes to establish a steady state, preventing the exit
of photons in a particular range of wavelengths and emission angles by placing
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Fig. 6.10 Angle and wavelength dependent light fluxes from photoexcited absorbers. Upper row:
Rhodamine 6G-doped fluorescence collector; Lower row: c-Si, both structures without (left) and
with overcoating of a particularly designed photonic crystal (right) to block light emission through
the escape cone

a photonic crystal on top.5 By appropriately designed photonic crystals [12], the
emission of luminescence photons from the excited absorber is suppressed. As a
consequence, the photon field in the absorber is enhanced, which might lead to
subsequent reabsorption of luminescence photons and thus to a higher photoexcited
state of the absorber. Figure 6.10 exemplifies the effect of suppressing luminescence
photons from a dye-doped fluorescence collector and from a c-Si absorber by means
of suitably designed photonic crystals [13].

5A photonic crystal is the analog for photons of an ‘electronic’ crystal where the periodic arrange-
ment of the ions with their electrostatic potentials determines the electronic band structure, i.e., the
energy-wave vector relation �.k/, in matter in general leading to energy gaps between allowed
energy bands (see Sect. 4.2). The allowed energy states present solutions to the Schrödinger
equation for electrons.

By analogy, for photons whose propagation also obeys differential equations of second order
in space and time, the Maxwell equations for E.x; t / , H.x; t /, a periodic arrangement of refractive
indices have the solution with frequency/energy regimes in which light propagation is not allowed
(in fact, the wave vectors become imaginary). These are called stop gaps. In three dimensions, the
spatial arrangement of periodic refractive indices controls the energy and angular direction of these
stop gaps.
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Fig. 6.11 Schematic spectral solar energy flux and cutoff energy �g to represent the portion of
solar energy absorbed (shaded area) and converted subsequently into chemical energy of excited
species such as electron–hole pairs. Note that the excess photon energy remains largely unused

6.2 Multispectral Conversion

An absorber with a band gap �g, such as the optical threshold in semiconductors or
the HOMO–LUMO gap in molecular absorbers, can be excited only by a specific
regime of solar photons which are continuously distributed across the entire energy
scale 0 � „! � 1. Photons with energies „! < �g cannot be used, as they are
not absorbed. Their companions with „! 
 �g can in principle be absorbed in
semiconductors, but their excess energy6 ��exc D „! � �g is mainly lost by rapid
thermalization of the ‘hot’ carriers. As the probability for generation of more than
one excited species (electron–hole pair or exciton) with one solar photon, even with
equivalent high energy, is almost negligible in conventional bulk absorbers, a large
fraction of solar photons essentially possess either too low or too high an energy to
be exploited efficiently (see Fig. 6.11).

6.2.1 Traditional Spectrum Splitting

The subdivision of the solar spectrum into more than one regime and the subsequent
conversion of the individual ranges of photon energies in selected absorbers with
finely adjusted optical band gaps has been a common approach for several decades.
The proposals for reducing the excess photon energies simultaneously decrease
the fraction of photons with too low an energy, thus raising the total conversion
efficiency. The concept of multispectral use of solar light, in specific setups with
two or three different optical threshold energies (as sketched in Fig. 6.12), generally
referred to as multispectral solar light conversion, or multicolour conversion, was
already proposed in the late 1950s and early 1960s for solar thermal systems

6Here, we have neglected the kinetic energy of electrons and holes (each of them amounting to
.3=2kT).
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Fig. 6.12 Schematic spectral solar energy flux divided by ‘spectrum splitting’ into three regimes
with appropriate cutoff energies �g1, �g2,�g3 to reduce losses of photon excess energies and obtain
access to lower photon energies as well
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Fig. 6.13 Spectrum splitting by optical series connection of absorbers with different optical band-
gap energies (band gaps). Left: Electrical series connection, called a two-terminal device with only
front and rear contact. Right: Electrically separated optically series connected devices, e.g., 6-
terminal approach with individual contacts for each cell (for power conditioning of cells in electric
series or parallel connection each cell needs two independent leads)

[14, 15], and intensively discussed for photovoltaics in the late 1970s and early
1980s [16, 17]. When this approach was later applied to solar cells, as referred to
tandem cells, triple cells, etc., it has been reintroduced in the last 20 years as one of
the most promising options for the great breakthrough of photovoltaics.

The optical arrangement of more than one gap cell, e.g., three band gaps in series
allows for the two versions of electrical design sketched in Fig. 6.13. The individual
optical band gaps are to be optimized with respect to the number of thresholds
(cells), the total light flux (concentration), and the spectral distribution, e.g., AM1,
AM1.5, etc.7

Furthermore, the electronic design of such devices must also be considered,
since the connection of the absorbers in optical series might be achieved by
connecting electrically in series, which would require ideal current matching of
each cell involved, or each cell could be addressed separately by individual contacts,

7AMi abbreviation of Air-Mass index designates the attenuation of the solar light flux when
travelling through the Earth’s atmosphere.
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Fig. 6.14 Iso-efficiency lines of an ideal tandem system versus band gas of top (�g1) and bottom
cell (�g2)[18] (upper); theoretical maximum efficiencies of ideal multiband gap systems versus
number of optical threshold energies for illumination with unconcentrated sunlight (circles) and
for maximum concentrated sunlight (triangles) (lower left), optimum gap energies versus number
of band gaps (lower right). Grey bars indicate the tolerance of gap values to keep variation in
optimum efficiency �� � 0:01�opt [19]

posing the technological challenge of transparent contacts and a substantially greater
number of technical steps for preparation.

Figure 6.14 (upper part) displays iso-efficiency lines versus bottom- and top-
cell band gaps �g1 and �g2 of ideal tandem devices for AM0 illumination and
absorber temperature T0 D 300K [18]. The dependence of 300 K-efficiencies
versus optimized band gaps and the correspondingly necessary number of optical
thresholds is illustrated in Fig. 6.14 (lower part left) for unconcentrated as well as
for maximum concentrated sunlight [19]. Figure 6.14 (lower part right) shows the
respective optical band gaps [19].

Electrical series connection (two-terminal devices) of tandems, triples etc.,
requires an accurate adjustment of the generation rate in each of the subcells by
tuning absorption coefficients, thicknesses, and collection efficiencies at maximum
power output (mpp), since the current in each cell has to match exactly for optimum
operation. Here, local, as well as temporal and seasonal variations of the spectral
distribution of the solar light become a crucial issue for competition with single-
threshold devices.
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Fig. 6.15 Circuit comprising two illuminated ideal diodes connected in series and requiring
current continuity (current matching)

In a simple analytical calculation, we may understand the sensitive dependence
of the output power for departures from the ideal current match in tandem cells. We
consider two cells in optical and electrical series connection, as sketched in Fig. 6.15
with individual j–V curves:

ji D j0;i

�

exp

�
eV i

kT i

�

� 1
�

� jphot; i ; (6.9)

where the index i is either i D 1 or i D 2. For reasons of simplicity, we assume
T1 D T2 D T . In addition, electrical series connection requires j1 D j2 D j . The
corresponding voltages are

eV i D kT ln

�

1C ji

j0;i
� jphot; i

j0;i

	

; (6.10)

which in series connection with boundary condition j1 D j2 D j sum to give

eV D e.V1 C V2/ D kT

�

ln

�

1C j

j0;1
� jphot;1

j0;1

	

C ln

�

1C j

j0;2
� jphot;2

j0;2

	�

:

(6.11)

For decent photoexcitation, we neglect the ‘1’ in the logarithm and arrive at

eV D kT

�

ln

�
j

j0;1
� jphot;1

j0;1

	

C ln

�
j

j0;2
� jphot;2

j0;2

	�

D kT

�

ln

�
1

j0;1

�
j � jphot;1

�
	

C ln

�
1

j0;2

�
j � jphot;2

�
	�

; (6.12)
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or equivalently,

eV D kT
�
ln
�
j � jphot;1

�C ln
�
j � jphot;2

� � ln Œj0;1� � ln Œj0;2�
�
: (6.13)

For identical generation rates in cell 1 and cell 2, i.e., jphot;1 D jphot;2 D jphot, we
can write

eV D kT
�
2 ln

�
j � jphot

� � ln Œj0;1� � ln Œj0;2�
�

D kT
�
2 ln

� Qj � � ln Œj0;1� � ln Œj0;2�
�
; (6.14)

where Qj D j � jphot. We compare identical generation rates in the two
series connected cells with a departure from the symmetric excitation such as
jphot;1 D jphot �� and jphot;2 D jphot C�, or equivalently,

� Qj C�
�

and
� Qj ��

�
,

and finally arrive at the voltage V for identical generation rates versus the voltage
QV for departure� from symmetric behavior:

eV D kT
�
2 ln

� Qj � � ln Œj0;1� � ln Œj0;2�
�

> kT
�
ln
� Qj C�

�C ln
� Qj ��

� � ln Œj0;1� � ln Œj0;2�
� D e QV ; (6.15)

or briefly V > QV , for any values of the current densities j , jphot, j0;1, and j0;2 (see
Fig. 6.16).

In most of these cases, the exchange of luminescence photons between the
absorbers and their neighbors, which also couples their individual quasi-Fermi
levels, has not been taken into account. Although it is an effect that does not
substantially modify the overall tandem- or triple-cell efficiency, but from a
principal point of view, it remains an instructive exercise (see Fig. 6.17) [18].

In molecular absorbers, the high-energy photons from the Sun are not absorbed
due to the decrease in absorption coefficient for energies sufficiently above the
optical threshold. Here the use of the full solar spectrum by the optical series
connection of absorber species with different HOMO–LUMO thresholds is as
beneficial as it seems to be obviously self-consistent.

1

V

j
2 1+2 1*

V

j 2* 1*+2*

Fig. 6.16 Current-density–voltage curves of two illuminated series-connected ideal diodes with
identical individual photocurrents (left) and with different photocurrents (right) that superimpose
to a common set of output voltage and output current density
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Fig. 6.17 Schematics of luminescence photon exchange and interconnected photoexcitation of
optically series-connected triple devices; the mutual photon exchange strongly depending on the
geometric constellation of the individual absorbers influence their particular photoexcited state
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Fig. 6.18 Principle of spectrum splitting by a dichroic mirror guiding the separated spectral parts
to absorbers with appropriate optical band gaps

6.2.2 Spectrum Splitting by Optical Components

In addition to the optical series connection of semiconductor absorbers, spectrum
splitting can also be achieved by separating the relevant spectral regimes into
different directions and angles. Although not particularly suitable for practical
application, one conceptually simple arrangement uses dichroic mirrors and exposes
different-band-gap cells to the corresponding part of the spectrum (see Fig. 6.18).

Another approach for spectrum splitting, technically much more relevant, is
based on spectral dispersion of photons with different wavelengths in a hologram,
with simultaneous light concentration of up to a factor of 100. These holograms
contain a thin transparent film with a periodic lateral variation of refractive indices,
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Fig. 6.19 Principle of
spectrum splitting and
simultaneous light
concentration by a hologram
guiding the separated spectral
parts to solar cells with
suitably adjusted optical band
gaps

solar cell, g1

transmission
hologram

solar cell, g2

Fig. 6.20 Schematic
arrangement of optically
series-connected fluorescence
collectors for spectral
splitting (with Stokes shift of
emission by excited dyes) and
simultaneous solar light
concentration [4]

1*
fluco 1

2*
fluco 2

3*
fluco 3

2
1

3

solar cell, g1

solar cell, g2

solar cell, g3

e.g., spin coated on a glass substrate, and act either in transmission (see Fig. 6.19)
or in reflection mode [20].

Since molecular dye absorbers exhibit considerable absorption only in a com-
paratively small wavelength range, a sequence of these can be arranged in optical
series connection, which is of course nothing but a multispectral approach. In
Fig. 6.20, this obviously favorable attempt is sketched for a sequence of fluorescence
collectors [4].

6.2.3 Subdivision of a Homogeneous Single Gap Absorber

An informative gedanken experiment consists of the subdivision of an absorber
with total thickness d into several layers, for example, n layers with individual
thicknesses (diC1 � di ) such that the generation of electron–hole pairs in each of
the layers is identical, i.e.,

gi D gtot

n
D 1

n

�
1 � exp.�˛d/� D

Z diC1

di

˛ exp.�˛x/dx :
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The ideal short-circuit current density in each of the subcells is

ji � gi D gtot

n
;

whereas the total voltage is the sum of the individual voltages governed by the
excess carrier concentrations:

Voc; i D kT ln

�
ni

n0

	

:

The subcell excess densities ni originate from identical generation rates gi and
identical lifetimes i D  , but with increasing depth, the corresponding thickness
across which the excess carriers spread out (e.g., by diffusion) rises due to the
exponential decay of the residual photon flux. Figure 6.21 exemplifies depth profiles
for the subdivision into two absorber layers, while the ratio .Voc;1 C Voc;2/=Voc; d

of the voltage contribution from the two cells to the open-circuit voltage of one
thick absorber is displayed in Fig. 6.22. Evidently, the reduction of the short-circuit
current density by a factor of n D 2 is overcompensated by enhancement of the
total voltage, since the excess carriers in the subdivided absorber do not spread out
as much as in the thick absorber. In thermodynamic language, in thin absorbers there
is less mixing of intensive variables, and hence higher output.
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Fig. 6.21 Depth profiles of photogenerated excess carriers and average excess densities in a single
absorber (left) and for comparison in an absorber subdivided into two local regimes with identical
total excess carrier number and two different average excess densities (right)
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Fig. 6.22 Gain in the open-circuit voltage .Voc;1 C Voc;2/=Voc; d of an absorber subdivided into
d1 C d2 D d in such a way that the total generation in the two parts is identical as compared with
a non-subdivided absorber of thickness d . Note that the possible short-circuit current density of
the subdivided structure amounts to only 0.5 of that of the absorber with thickness d
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6.3 Photon Conversion

6.3.1 Photon Up-Conversion

In photon-up conversion, the electronic transition from an initial state with energy
�i D �0 to a final state at �f D ��

2 might be initiated by two photons „!1 and „!2,
each of lower energy than the band gap „!1;2 < �g. The transitions are performed
via intermediate levels, firstly by excitation with „!1 from �0 to �1 and subsequent
relaxation �1 ! ��

1 [singlet to triplet state transfer to prevent a fast back reaction
(�1 ! �0)] and secondly with „!2 from ��

1 to �2 and again with relaxation to ��
2 .

The resulting radiative transition with

„!up D �„!1 � .�1 � ��
1 /
�C �„!2 � .�2 � ��

2 /
� D .��

2 � �0/

serves for the excitation when coupled in to an absorber with optical threshold �g �
„!up. This procedure is shown schematically in Fig. 6.23 with a mirror at the rear
side of the up-converter to reflect photons towards the absorber [21].

Currently analyzed materials for up-conversion are rare-earth-doped ceramics or
glasses, such as Er-doped materials, whose fluorescence with low photon energy
excitation fits the band gap of crystalline silicon (see Fig. 6.24).

With the up-converter above, the schematic increase in external quantum effi-
ciency of c-Si solar cells shows a rise in the below-gap regime (Fig. 6.25) [21].
However, since the up-conversion depends non-linearly on the light flux, this rise in
external quantum efficiency for non-concentrated sunlight remains of the order of
10�4.

A substantial increase in up-conversion contribution to quantum efficiency may
be expected by an artificial local increase of the photon flux via plasmonic effects
through small (few nm diameter) metallic nanoparticles between the absorber rear
surface and the front of the up-converter (see Sect. 6.6).
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Fig. 6.23 Schematics of up-conversion in a converter at the rear of a solar cell by using low-
energy photons with „!1 < �g, „!2 < �g which are not absorbed in the solar cell (schematic
energy diagram right); the upconverted photon [„!up D „!1 C „!2 � .�1 � ��

1 /� .�2 � ��

2 /] is
fed to the solar cell (left) where it can be absorbed because „!up � �g



188 6 Advanced Concepts: Beyond the Shockley–Queisser Limit

Fig. 6.24 Example of spectral emission by a photon up-converter (Er-doped FZ glass) after
excitation with IR photons with � D 1:54�m [21]
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Fig. 6.25 Exemplary external quantum efficiency of a solar cell with and without photon up-
conversion versus wavelength � [21]

6.3.2 Photon Down-Conversion

Photon down-conversion does not strictly belong to the approaches for surpassing
the Shockley–Queisser (SQ) limit, since in the SQ approach each of the photons
with „! 
 �g is assumed to be absorbed, contributing with probability unity to the
external quantum yield.

Since high-energy photons in semiconductor absorbers are trapped close to
the light-entrance surface as a consequence of the comparatively high absorption
coefficient and basically suffer from front-surface recombination, an appropriate
shift in their energy and corresponding absorption deeper in the bulk is beneficial for
the lifetime and extraction of photoexcited carriers. The proposed down-conversion
of photons is commonly performed by a suitable dye, optimally matching the band
gap of the absorber. As a consequence of the Stokes shift between absorption
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Fig. 6.26 Design principle of a of photon down-converter in conjunction with a solar cell. In order
to avoid the generation of electron–hole pairs by high energy photons in the vicinity of the absorber
front surface, where rates of surface recombination are rather large, the high-energy photons are
converted (Stokes-shifted) to lower energies and consequently absorbed deeper in the bulk of the
semiconductor where they suffer less from surface recombination (left); schematic energy diagram
for down-conversion (right)

and fluorescence emission, the red shift is achieved by the ‘natural’ behavior of
molecular structures (see the schematics in Fig. 6.26).

This technological effort has so far been applied successfully to enhance the
spectral quantum yield in thin-film CdTe solar cells in the wavelength regime
450 nm � � � 550 nm by prevention of carrier generation and equivalent
recombination in the highly doped, comparatively thick CdS window layer [22].

For the general application of photon down-converters, the balance between
loss by front-surface recombination without down-converter versus fluorescence
quantum yield multiplied by the solid angle for fluorescence photons towards the
absorber seems to have been not yet appropriately met. In addition, efficient down-
converters are not available for many of the desired spectral regimes.

6.4 Intermediate-Band-Gap Cells

A concept very close to multispectral converters is employed by the intermediate-
band-gap cell [23], which comprises a relatively large-band-gap semiconduc-
tor absorber with a comparatively narrow intermediate band (IMB) in the gap
(Fig. 6.27). This resembles conceptually the two-terminal-triple cell sketched in
Fig. 6.13 (left).

The intermediate band must not be confused with a defect band arising from
localized states, since its electronic wave functions in the ideal case are infinitely
extended, and the Fermi level is adjusted somewhere in the center of the inter-
mediate band. Illumination of this ideal three-band system provides for generation
and recombination rates in each of the three bands which are exclusively radiative.
The charge transport for transferring the photoexcited state to the boundaries of
the absorber takes place in the conduction and in the valence band, whereas the
intermediate band serves only for the storage of photoexcited charges. We recognize
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Fig. 6.27 Band diagram of
an intermediate band gap
absorber with transitions for
excitation within photon
energy regimes („!1 , „!2 ,
„!3 D „!1 C „!2). Reverse
rates accounting for the
radiative back-reactions to the
respective ground states are
not indicated [23]

that the excitation from IMB to CB is definitely not a two-photon process of the
kind that occurs in an up-converter, but rather is a consecutive absorption of photons
with appropriate energy to lift an electron to CB. In this sense the intermediate-band
system is an extension of the two-band system, and its performance has to be treated
analogously with the Shockley–Queisser procedure.

In order to harvest the solar light fed to three regimes with photon energies
„!1 < „!2 < „!3, only two of the energy levels can be freely selected, say „!1 and
„!2 with „!3 D .„!1 C „!2/. This approach resembles for the derivation of the
theoretical efficiency, even quantitatively, a triple cell with only two independently
adjustable band gap energies (see Fig. 6.27); thus its theoretical efficiency is, of
course, higher than that of an ideal tandem cell. In steady-state, the net rates of
transitions from VB to IMB and from IMB to CB (including the reverse rates via
radiative transitions to the respective ground states) have to ideally match:

rVB!IMB;net D rIMB!CB;net ;

in order to satisfy current continuity, avoiding depletion or oversaturation of the
intermediate band states. The asymmetry of the configuration needed to separate
charges of different polarity (electrons from holes) has—by the strategy of the
inventors of the IMB-cell—to be achieved with a pin structure, in which the intrinsic
layer consists of the IMB absorber.

The open-circuit voltage of such a device is governed by the regular band gap,
means, the separation of CB–VB states, where the thermal equilibrium carrier
densities n0 in the conduction band and p0 in the valence band are enhanced by
illumination. Equivalently, with a single barrier, the open-circuit voltage is

e � Voc � kT ln

�
np

n0p0

	

;

but the excess carrier densities which enter logarithmically into Voc and linearly
into jsc are substantially enhanced by absorption via the intermediate gap. This
gain raises Voc, jsc, and thus the efficiency as well, above the values for single gap
structures.

Figure 6.28 shows the theoretical efficiencies of cells with intermediate band
absorbers [24], operated at 300 K and under maximum solar light concentration
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Fig. 6.28 Theoretical
efficiencies of ideal solar cells
with intermediate-band-gap
and tandem-gap absorbers
versus energy gap �1 of
single-band gap absorber. In
each of the options, �1
denotes the optical threshold
of the low gap absorber. In
the IMB cell the energy
difference .�3 � �1/ does not
equal the upper gap energy �2
of the tandem cell [24]

versus the low gap �1 in comparison with a single gap and an optimum gap tailored
tandem. Respective values for optimum gaps, viz., �2 for tandems and �3 for the
CB–VB separation in intermediate-gap cells, are indicated in the figure.

6.5 Use of Photon Excess Energy

A substantial portion of the energy of solar photons not used in conventional single-
gap cells is their excess above the band gap .„! � �g/. Even in the early days of
photovoltaic research, this waste of energy initiated concepts for possible better use
of this part. For example, in the late 1970s, proposals were made to exploit the
so-called hot electrons (by Fan et al. [41]). In the course of the last decade, these
ideas have been rediscovered and repeatedly proposed under the heading of third-
generation photovoltaics.

6.5.1 Hot Carriers

The excess energy of electrons and holes above the band gap immediately after
photogeneration, i.e., before thermalization by interaction with phonons, is the
largest amount of energy wasted in a conventional electronic band system.8

8Recall that the entire energy of free electrons and holes after relaxation is composed of the band
separation plus average kinetic energy .3=2/kT of both type of carriers

� D �g C 3kT ;

where the temperature is that of the lattice T D Tphon.
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The extraction of these ‘hot-carrier’ energies would substantially increase the
yield of solar light conversion, but it turns out to be an extremely challenging
task, since hot carrier relaxation by interaction with phonons in three-dimensional
structures occurs on timescales shorter than a picosecond, that is, 10�12–10�13 s.
(Relaxation of electrons by interactions with other electrons is even faster.)

To slow down the phonon interaction, dimensionally reduced structures such as
particular two-dimensional II–VI type absorbers, or small clusters named quantum
dots (QDs), were first proposed in the early 1980s.9 Firstly, geometrically reduced
structures allow the extraction lengths to be small enough to let carriers escape
before phonon interaction becomes significant and, secondly, energy and wave-
vector relaxation times can be longer compared to the 3D extended states, according
to some evidence [25]. Furthermore, the ‘cold’ carriers in metal leads connecting the
absorber must not interact with the hot electrons, although the wave function of the
hot electron must overlap with those of the metal electrons to allow for a transition
to the contacts.

Currently there are two concepts for exploiting the energy of hot electrons. On the
one hand, use of the high kinetic energy � D �.k/ would contribute to higher open-
circuit voltages, provided these electrons can leave the absorber at an appropriate
energy level (see Fig. 6.29). These exits would act like a higher-band-gap absorber
that allows for a larger splitting of quasi-Fermi levels (see Sects. 4.2.3 and 5.1.4).
On the other hand, the energy of hot carriers might serve to generate more than
one electron–hole pair per absorbed photon by carrier multiplication, also termed

Fig. 6.29 Schematic outlet
for hot electrons from an
absorber through an energy
selective tunnel junction.
Here, cooling of
electrons/holes by
electron–phonon interactions,
is assumed to be strongly
attenuated or even completely
switched off

quantum dot

xw

tunnel
junction

t

9The reduction of the dimensions in condensed matter systems leads to discrete energy levels for
electrons and holes, separated on the average, by a typical ‘level spacing’ ��. As a rule of thumb
�� � �=N where N is the number of respective electrons (e.g., in the valence band) and � the
energetic width of the according band. For sufficient energy separation of these levels compared
with longitudinal optical phonon energies �� > „!phon;LO the cooling of ‘hot electrons’ requires
the generation of more than one phonon (multi-phonon emission), which is less likely compared
to one-phonon emission. Thus the transfer of electron energies to the lattice is reduced and might
increase the relaxation time by more than one order of magnitude. This effect is called the phonon
bottleneck.
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impact ionization. The increase mainly contributes to a higher photocurrent density,
reflected in larger short-circuit currents of the solar cells, but in addition contributes
to a slight increase in open-circuit voltage through the logarithmic dependence of

Voc on excess carrier density, eVoc � kT ln
h

np
n0p0

i
D kT ln

h
np
n2i

i
. The proposals for

appropriate ‘exits’ for these hot carriers include tunnel junctions and thermoelectric
barriers. However, the problem of aligning those exits, in particular in each of the
relevant direction in k-space, seems hard to realize10 [40, 42].

The second option, the generation of more than one excited species (electron–
hole pairs, excitons) per absorbed photon (likewise termed impact ionization) was
experimentally detected as early as the late 1950s, but also in the mid-1970s in Ge
and Si [26, 27], when applying blue light (photon energies „! > 3 eV), before
being rediscovered in the 1990s [28, 29]. In indirect semiconductors like Ge and Si,
the comparatively large excess photon energy above the (indirect) band gap needed
for this impact ionization to occur is strongly governed by the necessity to involve
phonons for wave-vector conservation.

A hot electron transfers its excess energy �.„!/ � .1 � 3/�g to a VB electron
in a bonding state to excite the latter to the conduction band. It should be noted that
the main portion of the photon energy exceeding the band gap goes to the electron.
This is because of the stronger band curvature in the conduction band compared to
that of the valence band, which determines the hole effective massm� by the second
derivative

@2�.k/
@k2

� 1

m�
n
:

In a detailed analysis [30], the energy redistribution of solar-light-generated hot
electron–hole pairs has been formulated neglecting the electron–phonon interaction.
The rates of electron–electron scattering for establishing the energy redistribution
are much higher than the rates of radiative transitions (recombination), which are
negligible for the steady-state energy distribution within a band. Moreover, the rates
of carrier extraction from the system (current density) are much lower still, and
thus their contribution to establishing the energy distribution is marginal and can be
omitted. The balance of the fluxes light-in (��;in) and light-out (��;out) together with
the particular chemical potential only serves to determine the output current density.

The results in terms of system efficiency of this concept are shown schematically
in Fig. 6.30 versus optical band gap for unconcentrated sunlight (AM0 illumination)
and for maximum light concentration (47;000 � AM0). As a nice coincidence with
results in previous chapters, for zero-band gap absorber (ideal Planck black body)

10In order to collect hot electrons in each of the directions in the k-space the respective exits
would have to be attached to each CB minimum of the Brillouin zone [in Si exist six CB minima
(ellipsoidal pockets with long axes directed along the < 100 > direction) or eight CB minima in
Ge (half ellipsoids with long axes along < 111 >)].
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Fig. 6.30 Efficiencies of ideal photovoltaic converters with impact ionization/charge generation
by ‘hot photons’ versus optical band gap under AM0 illumination and under maximum concen-
trated sunlight (47;000 � AM0) compared with the efficiency of a single gap absorber in the
radiative limit (Shockley-Queisser limit) [30]

and maximum sunlight concentration, we get the well known number for maximum
sunlight conversion efficiency � � 0:86.

An efficient method for the generation of multiple excited species, in particular
of excitons (bi-excitons11) by absorption of a single photon has been proposed to
occur preferentially in nanocrystals. This multiple exciton generation (MEG) has
attracted a considerable amount of interest, particularly in quantum dots.12 MEG
has been proven experimentally to occur effectively in PbSe quantum dots, see for
example [31–33].

Figure 6.31 shows the experimental results for multiple carrier generation in
terms of quantum efficiency per absorbed photon in PbSe QDs as a function of
photon energy. The dotted lines have been estimated on the basis of the balance for
absorbed photon energies and the creation of electron–hole pairs (EHPs):

�� D �loss D �„! � �g
� � .m � 1/ �g D „! �m�g ;

where �� is the energy loss for absorption of one photon. Due to the requirement
of integer numbers m in the ideal case of unit probability for multigeneration this
approach leads to a staircase behavior of the quantum efficiency versus photon
energy „!.

From experimental data [32, 33], instead of a staircase behavior of the quantum
yield, above a particular threshold a linear increase versus photon energy has
been found. This has been fitted by the dashed lines in Fig. 6.31 with probability

11An electron-hole-pair coupled by Coulomb interaction has to be regarded as single quasi-particle
(exciton); two such pairs (a bi-exciton) with sufficient spatial overlap of their wave functions
behave, like a ‘molecule’ composed of two quasi-particles.
12A quantum dot (QD) results from the reduction of the geometrical size of matter in three
dimension with the effect of sufficient separation of energy levels (see footnote 5 in Sect. 6.5.1).
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Fig. 6.31 External quantum
efficiencies for multiple
electron–hole pair generation
(EHPM) in PbSe quantum
dots in comparison to PbSe
and PbS bulk absorbers
versus photon energy [33]
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�EHPM;PbSe;QD D 0:6 for electron–hole pair multiplication (EHPM) in the PbSe
QDs, whereas in bulk absorbers the efficiency turned out to be substantially lower
(�EHPM;PbSe D 0:31, �EHPM;PbS D 0:45).

The introduction of these EHPM quantum efficiencies into the radiative limit
approach yields the efficiency of solar light conversion versus photon energy of the
optical gap (threshold energy of the QDs), shown in Fig. 6.32 for illumination with
an AM1.5 solar spectrum.13

Theoretically, this approach for ‘hot electron-hole’ energy use has been sup-
ported by investigating the probability for impact-like multiplication processes
in nanocrystals of different sizes and material composition via band structure
calculations and the behavior of Coulomb-coupled exciton states (bi-exciton states).
In essence, out of numerous II–V, II–IV, and group IV element semiconductors, the
most promising candidates for direct carrier multiplication (DCM) are PbSe, CdSe,
GaAs, InP, and c-Si [34].

13Since AM1.5 spectra contain scattering and absorption of photons in the terrestrial atmosphere,
e.g., by water vapor, ripples occur in the solar light flux as well as in the spectral performance of
converters.
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6.6 Plasmonic Effects for Increase in Local Photon Density

The exposure of metals to electromagnetic waves may lead to a collective excitation
of the conduction-electron ensemble in a narrow frequency regime (plasmons). This
collective excitation is commonly formulated in the independent-particle picture as
oscillatory motion of ‘free’ (non-bound) electrons:

m� @2x
@t2

Cm� 1
m

@x

@t
D E0

loc exp.i!extt/ ;

with effective mass m�, momentum relaxation time in the band m, and amplitude
and frequency of the local electric field E0

loc and !ext, respectively. The transition
from the average local displacement x.t; !ext/ due to the dielectric susceptibility
".!ext/ via the electric dipole moment e � x.t; !ext/ and polarization P D nve �
x.t; !ext/, where nv is the volume density of polarizable sites (dipoles),14 is given
by [40]

".!ext/ D 1C �el; bound C �el; free D "el; bound C �el; free

D "el; bound

�

1 � nv; freee
2

"0"el; boundm�!ext .!ext � i=m/

	

: (6.16)

For metals in the visible wavelength range !ext 	 1=m with the free electron
density nv;free, this reduces to

" .!ext/ � "el; bound

�

1 � nv; freee
2

"0"el; boundm�!2ext

�

D "el; bound

"

1 �
�
!plasma

!ext

�2#

;

(6.17)

with the abbreviation

!plasma D
s

nv; freee2

"0"el; boundm� : (6.18)

6.6.1 Plasmons in Small Metal Clusters

For dimensionally reduced metals such as clusters of a length scale of few nanome-
ters (nanoparticles), the plasma resonance frequency of extended bulk metals can be

14We remember that polarizable sites may be introduced generally by bound and by free electrons
al well as by ions; the polarization effect to be described also in terms of the appropriate
susceptibility tensor as P D "0�.
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Fig. 6.33 Spectral absorbances (normalized to unity) of 20 nm diameter AuxAg1�x nanoparticles
with different composition x (left) and Au nanoparticles with different diameters ø (right) [36, 37]

substantially modified and even tailored by the shape of the clusters, e.g., spherical
or elongated. In the presence of electromagnetic waves, the nanoparticles act as
antennas, for reception and emission of electromagnetic radiation [35]. As an
example, absorption by Au nanoparticles of different sizes and with different Ag
admixtures, both factors influencing the plasmon resonance energy significantly, is
plotted in Fig. 6.33 [36, 37] .

The emission by antennas contains various contributions depending on the
distance jrj at which, in the far field, the portion of electric field jEj � 1=jrj,
exceeds each of the jEj- and jHj components depending on higher power on jrj.
However, in the near field, the so-called evanescent (non-propagating) modes with
jEj � 1=jrjn, n > 1, emerge strongly. As a consequence, in the near field these
modes in the vicinity of the resonance frequency provide for strong enhancement of
the electric field strength, and hence also its square, which we know to be equivalent
to the ‘evanescent’ photon density jEj2j.

6.6.2 Local Increase in Photon Density

The local enhancement in photon density of the incoming flux by plasmonic effects
[38], even if it occurs as evanescent modes, can be successfully used to initiate
nonlinear effects in matter such as up-conversion of two long-wavelength photons
into one of shorter wavelength.

The contact of nanoparticles with a corresponding dielectric or semiconductor
absorber (with optical threshold �thresh substantially above the resonance energy), in
which the non-linear excitation, e.g., by 2„!plasma to �thresh, is desired (see Fig. 6.34),
will enhance the high evanescent field. This is a consequence of the conservation of
the normal component of the dielectric displacement Dn D "0".!/En at the interface
between two different phases.
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Fig. 6.34 Metallic
nanoparticles located at an
absorber surface to increase
the local electric field
strength (evanescent field) in
the absorber for the initiation
of nonlinear
charge-generation effects

The enhancement of the photon flux in terms of local redistribution of the electric
field, additionally supported by the geometrical shape of the nanoparticle, such as
elongated ones, is not unlimited, of course. As absorption and emission in matter are
generally coupled, the same limits exist like those which hold for the concentration
of light by optical methods and for the Stokes-shifted photon fluxes in dye absorbers,
like in fluorescent collectors.

6.7 Thermophotovoltaic Energy Conversion

Thermophotovoltaics can be conceptually linked to an ideal solar light absorber
and an ideal conversion engine, proposed in the 1950s and 1960s at conferences,
workshops, and in unpublished lectures (P. Aigrain, C.D. White, and B.D. Wedlock
and reviewed later [39]). Concentrated sunlight is fed into an absorber which heats
up to a temperature Tab depending on the light entrance flux, the geometrical
design of the absorber, the entrance aperture, and so on. The absorber emits thermal
equilibrium radiation according to its temperature and emissivity, and this is fed to
a solar cell through a (reflective) band filter allowing transmission only of photons
with appropriate energy with respect to the band gap of the cell. So only photons
convertible in the solar cell with comparatively high yield are extracted from the
absorber, while others are reflected back to the radiation source by the filter (see
schematics in Fig. 6.35).

Despite the very high theoretical efficiency of this approach in reality, heat
losses by radiation, convection, and conduction in the absorber at the required
high temperature lower the efficiency of the few existing demonstration sys-
tems to � � 0:3. Moreover, problems developing suitable materials and the
comparatively high cost of the equipment requiring vacuum technology, have
prevented so far every attempt of commercialization. For details, see the review by
Coutts [39].
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Fig. 6.35 Configuration of a thermophotovoltaic device: concentrated sunlight (from an imaging
or non-imaging concentrating element) heats a thermal absorber of which the thermal equilibrium
radiation is fed through a narrow (reflective) band gap filter �filter to a solar cell with appropriate
band gap �g D �filter. Absorber photons with energies outside the filter transmission are ‘given
back’ to the thermal absorber and only the energy of those photons passing the filter has to be
replaced by the solar light. Thus the solar cell only sees spectrally selected photons, in order to
minimize the excess photon energies as well as those photons with energies below the band gap
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Appendix A
Radiation in Condensed Matter

A.1 Propagation and Attenuation

The spatio-temporal behavior of electromagnetic radiation propagating in matter or
across phase boundaries therein is appropriately treated with Maxwell’s equations.
For example, combining

r � E D �	0	@H
@t

(A.1)

with1

r � H D "0"
@E
@t

C j D "0"
@E
@t

C �
�
E C .v � 	0	H/

�
; (A.2)

then neglecting the effect of the magnetic field on charge transport, i.e., setting

�.v � 	0	H/ � 0 ;

and applying the boundary conditions

r � .	0	H/ D 0 (no magnetic monopoles)

and

r � E D �

"0"
� 0 (space charge in the relevant spatial scale negligible) ;

1The constants 	0; 	; "0; "; designate magnetic permeability and dielectric susceptibility, each in
vacuum (subscript “0”) and in matter, where � represents the stationary state electric conductivity.
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the electric field strength can be written

�E D 	0"0	"
@2E
@t2

C 	0	�
@E
@t

: (A.3)

For a harmonic wave like E D E0 exp .ik � x/ exp.�i!t/, we find the solution
for propagation in the x-direction to combine the (complex) wave vector Qkx with
material properties �, 	, � , etc.:

k2x D "0	0"	!
2 C i	0	�! D "	

c20
C i

	�

"0c
2
0

; (A.4)

Qkx D ˙!

c0

r

"	C i
�	

"0!
; (A.5)

where c20 D 1="0	0 is the square of the vacuum speed of light. Since the ratio of the
wave vector to the vacuum wave vector, viz.,

Qkx
k0

D Qn D n1 C in2 ;

represents the refractive index (also a complex magnitude), we arrive at the solution
for the harmonic ansatz above by introducing Qkx."; "0; 	; �; !/. The imaginary part
of the refractive index in2 can be extracted in the form

n22 D 1

2
"

2

4

s

1C
�

�

!"0"

�2
� 1

3

5 : (A.6)

It determines the attenuation of the amplitude2 versus propagation length

E.x/ D E0.x/ exp.ik0;xn1x/ exp.�i!t/ exp.�k0;xn2x/ :

The damping of the electric field strength E.x/ versus x is translated into the
attenuation of the photon flux �phot � E2.x/, we get the optical absorption
coefficient

˛.!/ D 2!
p
"0	0n2 D 2!

p
"0	0 � 1

2
"

2

4

s

1C
�

�

!"0"

�2
� 1

3

5 : (A.7)

2The amplitude of the electric field strength propagating in x-direction E.x/ consists, of course, of
components in y- and z-direction, Ey , Ez.
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A.2 Propagation Across Interfaces

The propagation of electromagnetic waves across interfaces between matter with
properties indexed 1 and 2 is again formulated with Maxwell’s equations and
the appropriate boundary conditions expressing conservation of the tangential
components of the electric and magnetic fields

Et;1 D Et;2 and Ht;1 D Ht;2;

and also their normal components

"0"1En;1 D Dn;1 D Dn;2 D "0"2En;2 and 	0	1Hn;1 D Bn;1 D Bn;2 D 	0	2Hn;2:

Generally, for each of the two media, one has to assume amplitudes of waves
A

f;r
1;2, such asE f;r

1;2 andH f;r
1;2 traveling in forward as well as reverse directions, denoted

by superscripts f and r here. For simplicity, we shall only discuss normal incidence
on the interface. In addition, we shall only consider non-magnetic materials (	1 D
	2 D 1).

We choose a harmonic ansatz A D A0 exp.ikx/ exp.�i!t/ for the electric and
magnetic field components, bearing in mind that propagation in the x-direction
implies y- and z-components of the fields. (Recall that, for linear interaction of
radiation with matter, any shape of wave may be generated by superposing harmonic
waves with different amplitudes, wave vectors, and frequencies.) We then balance
the left- and right-hand sides at the interface (located at x D 0) for the electric field
with known amplitude E f

10, frequency !, and wave vector

k1 D k0 Qn1 D !

c0
Qn1

of the electric field in medium 1:

E1 D E f
10 exp

�

i
!

c0
Qn1x

�

exp.�i!t/C E r
10 exp

�

�i
!

c0
Qn1x

�

exp.i!t/

D E2 D E f
20 exp

�

i
!

c0
Qn2x

�

exp.�i!t/ ; (A.8)

and get

E f
10 C E r

10 D E f
20 : (A.9)
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A second equation for the determination of the two unknown amplitudes E r
10 and

E f
20 can be formulated via the magnetic field balance:

H1 D H f
10 exp

�

i
!

c0
Qn1x

�

exp.�i!t/CH r
10 exp

�

�i
!

c0
Qn1x

�

exp.i!t/

D H2 D H f
20 exp

�

i
!

c0
Qn2x

�

exp.�i!t/ ; (A.10)

where the z-component is coupled to the y-component of the electric field and vice
versa. From r � E D �	0	@H=@t , the H relation is converted into the second E
equation which reads, again at the interface position x D 0,

i Qn1 !
c0
E f
10 � i Qn1 !

c0
E r
10 D i Qn2 !

c0
E20 ; (A.11)

or

E f
10 � E r

10 D Qn2
Qn1 E

f
20 : (A.12)

Combining these two equations, we obtain the transmission and reflection factors
for the amplitudes (bearing in mind that both quantities are generally complex):

Qr1;2 D E r
10

E f
10

D
� Qn1

Qn2 � 1

�� Qn1
Qn2 C 1

��1
D Qn1 � Qn2

Qn1 C Qn2 ; (A.13)

and finally,

Qt1;2 D 2 Qn1
Qn1 C Qn2 : (A.14)

Note, that r1;2 and t1;2 definitely do not sum up to unity; energy flux conservation
reads differently:

The square of the amplitude reflection and transmission factors times the
corresponding propagation wave vector represents the energy fluxes for forward
and reverse directions, and these do sum up to unity:

�
E f
10

�2
n1 D �

E r
10

�2
n1 C �

E f
20

�2
n2 ;

or

1 D .r1;2/
2 C .t1;2/

2 n2

n1
:



A.3 Matrix Transfer Formalism 205

A.3 Matrix Transfer Formalism

The optical properties of multilayer sequences available in many solar cells for
combinations of antireflective coatings with absorbers, for heterojunctions, for
tandem structures, etc., are preferably formulated by a matrix transfer formalism
that combines the forward and reverse propagation of electromagnetic fields in a
particular layer i with those from and to its neighbor layers .i � 1/ and .i C 1/

(Fig. A.1).
In layer i we find the amplitudes of forward (f) and reverse components (r)

Af
i D Af

i�1 Qti�1;i exp.ik0 Qni�1di�1/CAr
i Qri;i�1 exp.ik0 Qnidi / (A.15)

and

Ar
i D Af

i Qr i;iC1 exp.ik0 Qnidi /C Ar
iC1 Qti�1;i exp.ik0 QniC1diC1/ : (A.16)

This set of equations with neighbor layer inputs into i from both sides .i � 1/ and
.i C 1/ is not very comfortable to work with. However, we have

Af
i D ˛Af

i�1 C ˇAr
i (A.17)

and

Ar
i D �Af

i C ıAr
iC1 ; (A.18)

and it can thus be translated into a version that is easier to apply with input
magnitudes only from one side, i.e., from i C 1 or from i � 1:

�
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Ar
i

�
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�

(A.19)

Fig. A.1 Amplitudes, e.g.,
electric field strength,
propagating back and forth in
layer i of a multilayer
configuration with refractive
indices : : : ; Qni�1, Qni ,
QniC1; : : : ; each complex with
real and imaginary parts, and
across interfaces on the left
and right sides, for
formulation of the matrix
transfer ansatz
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On the basis of this representation we are able to calculate the magnitudes
of interest (amplitudes including attenuation and interference effects) from the
entrance interface (layer 0) to the rear end of the layer sequence in which the reverse
wave is either explicitly given or does not exist.

The coefficients in the matrix above read, with phase accumulation and attenua-
tion,

˛ D ti�1;i exp.ik0 Nni�1di�1/ exp.��i�1di�1/ ; (A.20)

ˇ D ri;i�1 exp.ik0 Nnidi / exp.��idi / ; (A.21)

�� D ri�1;i exp.ik0 Nni�1di�1/ exp.��i�1di�1/ ; (A.22)

ı� D ti;i�1 exp.ik0 Nnidi / exp.��idi / ; (A.23)

where Nn denotes the real part of the respective refractive index and � is the amplitude
attenuation coefficient (imaginary part of the refractive index � D in2).



Appendix B
Absorption of Photons in Condensed Matter

The electronic transition from an initial valence band state  i to a final state  f

in the conduction band initiated by the interaction of photons with electrons in a
semiconductor is basically treated as a perturbation problem in quantum mechanics
(for details see [1]). The photon is expressed by a vector potential

A.r; t/ D 1

2
A0"

n
exp

�
i
�
kp�r � !t� �C exp

� � i
�
kp�r � !t

� �o
; (B.1)

where " is the normalized polarization vector, and the magnetic field H is given by
H D r �A. The Hamiltonian OH0 of electrons in the unperturbed system is modified
due to the magnetic field into OH D OH0 C OH1, where

OH1 D e

mc
OpA ;

and the momentum operator reads Op D �i„r. The Schrödinger equation is thus

�

� „2
2m

r2 C ie„
2mc

.rA/C ie„
2mc

.Ar/C e2

2mc2
.A/2 C V .r/

	

 D �i„@ 
@t

:

(B.2)

Introducing the relation A Op D OpA and the unit polarization vector e, and assuming a
small perturbation so that the term in A2 can be neglected, the probability for ‘direct’
transitions !VC from initial state jvki (valence band) to final state jck0i (conduction
band) becomes [1]

!VC D �e2

2„m2
A20

ˇ
ˇ
ˇhck0j exp.ikp�r/e� Opjvki

ˇ
ˇ
ˇ
2 � ı��C

�
k0� � �V.k/� „!� : (B.3)
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With Bloch functions jjki D ujk.r/ exp.ik � r/, where j represents either v or c,
and kp is the photon wave vector, and with wave vector conservation

kp C k � k0 D Gm ;

where Gm denotes any reciprocal lattice vector. Assuming that the photon wave
vector is negligible kp � 0 in comparison with lattice wave vectors in the first
Brillouin zone, one arrives finally, after some additional intermediate equations, at
the imaginary part of the dielectric constant "2, which is composed of contributions
from the individual valence–conduction band transitions:

"2 D �e2

"0m2!2

X

k;k0

je � pcvj2ı��c.k0/� �v.k/ � „!�ıkk0 ; (B.4)

or

"2 � .„!/�2jMi;fj2.„! � �g/
1=2 : (B.5)

This can be converted into the absorption coefficient ˛.„!/ for direct transitions,
viz.,

˛.„!/ D !

c0
"2.„!/ ; (B.6)

where ! is the frequency and c0 the vacuum speed of light.
For valence band–conduction band transitions which are accompanied by fulfill-

ment of wave vector conservation with the participation of phonons, an analogous
treatment leads to the corresponding relation for the imaginary part of the refractive
index and the absorption coefficient of indirect semiconductors:

"2 D �e2

"0m2!2

X

m;˛;˙
jMm;˛;˙

cv j2 �
X

k;k0

ı
�
�c.k0/ � �v.k/� „! ˙ „!˛q

�
: (B.7)

Here, the first summation is to be carried out for a virtual state jmi and the
phonon mode ˛, either in absorption .C/ or in emission .�/, with the appropriate
probability for phonons n˛C1

q , n˛q approximated by phonon statistics from the Bose–
Einstein distribution function. The second summation is performed in the k-space,
in the neighborhood of the top of the valence and the minimum of the conduction
band, located at different wave vector positions and associated with corresponding
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curvature (second derivatives) representing the effective masses of holes (m�
px;y;z in

VB) and of electrons ( m�
nx;y;z in CB):

X

k;k0

ı
�
�c.k0/ � �v.k/� „! ˙ „!˛q

�

D
X

k;k0

ı

"

�c0 � �v0 C „2
2

 
k2x
m�

px
C k2y

m�
py

C k2z

m�
pz

C k02
x

m�
nx

C k02
y

m�
ny

C k02
z

m�
nz

!

�„! ˙ „!˛q
#

: (B.8)

Finally, the imaginary part of the refractive index is obtained as

"2 D �e2

"0m2!2
K

.4�/3

X

m;˛;˙

(
ˇ
ˇAm;˛;Ccv

ˇ
ˇ2
�„! � „!˛q � .�c0 � �v0/

�2

1 � exp
��„!˛q =kT

�

)

C �e2

"0m2!2
K

.4�/3

X

m;˛;˙

(
ˇ
ˇAm;˛;�cv

ˇ
ˇ2
�„! C „!˛q � .�c0 � �v0/

�2

�1C exp
�C„!˛q =kT

�

)

:

(B.9)

Here, the first term corresponds to absorption of a photon associated with the
emission (generation) of a phonon of mode ˛ and energy „!˛q , with wave vector
q, whereas the second term represents photon absorption with absorption of a
phonon (‘borrowed’ from the lattice) with appropriate energy and wave vector. The
abbreviation of the contribution of the effective hole and electron masses reads

K D
�
2

„2
�3q�

mpxmpympz
� �
mnxmnymnz

�
:

For these phonon-associated transitions, the absorption coefficient ˛.„!/ in a
simplified version with �c0 � �v0 D �g is written analogously [1]:

˛.„!/ D C phon; absorb 1

!2

�„! C „!phon � �g
�2CC phon; emiss 1

!2

�„! � „!phon � �g
�2
:

(B.10)
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Appendix C
Photon Density in Matter

The photon density in matter out of thermal equilibrium results from perturbations
from outside, e.g., from an external photon field. In steady state the chemical
potential of the photons 	� equals the chemical potential of the electron system
	np, provided no charge carriers are extracted from or injected to the material.
As 	np rises—with good approximation—logarithmically with electron and hole
densities, for solar light conversion, the goal is to maximize likewise the internal
photon density in matter.

In the language of statistical ray optics [1], the stationary energy density in non-
or weakly absorbing solid matter, e.g., in dielectrics with refractive index n, be it in
thermal equilibrium (	 D 0) or in an excited state, and characterized by Planck’s
generalized law (	 > 0), can be written

u.!/ D 2k2

.2�/3
.„!/ 1

exp

�„! � 	
kT

�

� 1

d˝ dk ; (C.1)

where the first factor is the density of photon states in k-space, the second is the
photon energy, and the third is the Bose factor. As usual, d˝ represents the solid
angle.

For ergodic optical behavior of solid matter, this relation can be converted into
the energy flux using k D n!=c and the group velocity vgr D c D d!=dk

�" D vgru.!/ D 2n2!2

.2�/2c2
.„!/ 1

exp

�„! � 	

kT

�

� 1
d˝ d! : (C.2)

Ergodicity means that the variables time t and space x in the description of
the flux properties cannot be exchanged or, in other words, after sufficient time
and propagation path the photons have ‘forgotten’ which direction they originally
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212 C Photon Density in Matter

Fig. C.1 Non-ergodic (left) and ergodic photon behavior (right) due to surface scattering proper-
ties of dielectric matter

Fig. C.2 Ergodic photon behavior due to surface scattering properties of dielectric matter with
ideal back-reflector

came from. Typical ergodic behavior of photons can be generated by an ideally
(wavelength independent and isotropic to the solid angle 2�) scattering surface (see
Fig. C.1).

The energy flux depends on n2 what simply results from the ‘compression’ of
the wave modes in the three-dimensional k-space due to the presence of a refractive
index n. (The more modes can be fitted into the energy interval d!, the more they
are squeezed through the refractive index n.)

A further increase of the internal photon flux �� by a factor of 2 can be
achieved using an ideally reflecting rear surface of the dielectric matter which
returns the photons (see Fig. C.2). In essence, compared to the energy flux outside
��; out D �u; incident, the internal energy flux ��; int becomes in the best case ��; int D
.2n/2��; incident.
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Appendix D
Surface Recombination and Carrier Depth
Profiles

D.1 Carrier Flux at the Surface

As a consequence of the interrupted periodic potential at the surface of a crystal
due to missing neighbors and non-saturated bonding sites (dangling bonds) at the
surface electronic states are generated, in addition to those in the bands resulting
from the bulk properties.1 These surface states allow for a surplus in recombination
rates for excess carriers. In our picture, the surface states act as an additional sink
for photoexcited carriers which, depending on the concentration of these states, may
substantially reduce the overall excess carrier density.

In the steady state, the carrier current at the surface (xs) is conserved2 and reads
for positions xs � ı and xs C ı (see Fig. D.1):

� .xs � ı/ D � .xs C ı/ :

The general electric current density of a particle species (i.e., electrons) with
concentration n and mobility 	n reads

jn D en	n

�

�rx

�
1

e
�Fn.x/

��

: (D.1)

1Stationary state electronic wave functions at a potential barrier, like at a surface exhibit an
imaginary wave vector causing the amplitude to decay exponentially with distance into the barrier.
Such wave functions provide electronic states in the barrier material even without the existence of
non-saturated dangling bonds.
2In one dimension the treatment in terms of current and current density is identical.
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Fig. D.1 Schematic current
continuity at the surface at xs.
The carrier current arriving at
xs is removed from the
surface with a particular
velocity S , called the surface
recombination velocity

vacuumbulk

xs x

su
rf

ac
e

Γ(xs+δ)

carriers disappear with surface
recombination velocity S

Γ(xs-δ)

Writing

�Fn D kT ln

�
n

n0

	

D kT ln

�
�nC n0

n0

	

;

we get the spatial derivative

rx .�Fn/ D rx

�

kT ln

�
n

n0

	�

:

Assuming spatially independent temperature T ¤ T .x/, and spatially independent
n0 ¤ n0.x/, which implies n.x/ D n0 C�n.x/, so that diffusion is the sole driving
force, we continue with

jn D e.n0 C�n/

�
	nkT

e

��
n0

n0 C�n

��

�rx

�
�n

n0

�

� rx

�
n0

n0

�	

:

We substitute in .	nkT=e/ D Dn and get the well known expression for a diffusion
current density:

jn D eDn
��rx

�
�n.x/

��
:

In one dimension we accordingly find at xs:

�eDn@.�n/=@x D eS�n;

where S represents the surface recombination velocity, in other words, this velocity
with which excess carriers are removed from contributing to charge transport.
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D.2 Surface Recombination and Carrier Diffusion

The excess carrier concentration �n.x/ in homogeneous absorbers is usually
derived using the steady-state continuity equation with a linear recombination term:
the input parameters of the carrier depth profile are governed by properties of the
bulk, such as diffusion length L and lifetime  , and by those of the surfaces, which
are usually expressed in surface recombination velocities at the front (S0) and rear
side (Sd ) of the absorber. It goes without saying that the profile of the excess carrier
generation also enters into the resulting depth dependence n.x/. Hence,

@.�n.x//
@t

C r��n.x/� D g.x/� r.x/ : (D.2)

We apply a one-dimensional ansatz in the x-direction, steady-state conditions, and
carrier motion exclusively driven by diffusion with a particle flux

1

e
jx D �Dn

@.�n.x//

@x
:

We assume a generation rate g.x/ D g0 exp .�˛.„!/x/ with absorption coeffi-
cient ˛ and recombination with a rate linear in the carrier density r D �n.x/= ,
and hence get a differential equation of second order in which generation occurs as
a perturbation of the homogeneous equation:

Dn
@2.�n.x//

@x2
C�n.x/ D g0 exp.�˛x/ : (D.3)

We separate the above relation into a homogeneous part containing two exponential
terms

�nhom.x/ D A exp


C x

L

�
C B exp



� x
L

�
;

with diffusion length of electrons L D p
Dn , together with an inhomogeneous

part. The result is finally3

�n.x/ D �nhom.x/C�ninhom.x/

D A exp


C x

L

�
C B exp



� x
L

�
C g0

1 � .˛L/2
exp.�˛x/ : (D.4)

The coefficientsA and B are determined by the boundary conditions at the absorber
front (x D 0) and rear side (x D d ), where the concentrations are controlled by the

3The solution below only holds for .˛L/2 ¤ 1. The ansatz for the solution of the so-called
resonance case .˛L/2 D 1 reads �n.x/ D x exp.ˇx/.



216 D Surface Recombination and Carrier Depth Profiles

Fig. D.2 Example diffusion profiles of excess carriers �n.x/ versus normalized depth x=d for
a variation of front and rear surface recombination velocities S0 and Sd and different absorption
factors ˛d

surface recombination velocities Sj .xj / through

�n.x/S.x/ D �Dn@.�n.x//=@x

with S.x D 0/ D S0 and S.x D d/ D Sd . The final solutions for the prefactors A
and B are

A D
�

g0

1 � .˛L/2

��

exp

�

�d
L

�
�
LS0Sd �DnS0 � ˛D2

n CDn˛LSd
�
��

1

�

�

C
�

g0

1 � .˛L/2

�
�
exp.�˛d/ �˛D2

n C ˛DnLS0 � DSd � LS0Sd
��
�
1

�

�

(D.5)

and

B D
�

g0

1 � .˛L/2

��

exp

�

�d
L

�
�
LS0Sd CDnS0 C ˛D2

n CDn˛LSd
�
��

1

�

�

C
�

g0

1� .˛L/2

�
�
exp.�˛d/ �˛D2

n � ˛DnLS0 � DSd C LS0Sd
��
�
1

�

�

(D.6)
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with denominator

� D 2

��
D2

n

L
C LS0Sd

�

sinh

�
d

L

	

CD .S0 C Sd / cosh

�
d

L

		

(D.7)

To visualize depth profiles and the influences of surface and bulk properties, see the
examples in Fig. D.2.



Appendix E
Finite Length of a Homogeneous Diode

The current density–voltage relation of a homogeneous pn-junction was derived in
Sect. 5.1.2 with the assumption that the p- and n-layers had infinite spatial extent. In
particular, in the expression for the reverse saturation current density j0, regarding
the boundary conditions of the infinitely extended layers, it was assumed that the
perturbation of the minority density away from the junction at infinite distance
asymptotes exponentially towards the thermal equilibrium values.

For finite length of the individual layers, however, terminated with a metal
as contact material, the excess density vanishes at finite distances �xp and xn

in Fig. E.1. The relevant minority carrier densities at �xp, xn are introduced by
comparatively high (‘infinite’) surface recombination velocities S.�xp/ ! 1 and
S.xn/ ! 1. In each of the solutions for the spatially dependent minorities, two
exponential terms now appear, one with positive and one with negative argument.
The particular spatial densities are thus formulated in terms of hyperbolic functions
with arguments containing the magnitudes of the surface recombination velocity
Sj , minority diffusion length Lj , diffusion coefficient Dj , thickness of layer xj ,
and of course the elementary charge e D C1:6 � 10�19 As. In essence, only the
reverse saturation current density j0 is modified by the spatial limitation of the
diode, while the qualitative behavior in the dark and under illumination j D j.V /

remains unchanged:

j0 D enp0

�
Dn

Ln

�
0

B
B
@

LnSp

Dp
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�
wp

Ln

	

C sinh

�
wp
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�
wp
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C LnSp

Dn
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�
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1

C
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1
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Fig. E.1 Sketch of spatially
limited homogeneous
pn-junction. Space charge
regions are neglected

Here, the widths wp � xp and wn � xn are approximations, since these widths
correspond to the lengths/thicknesses of the p- and the n-type doped layers after
subtraction of the widths of the space-charge regions.

For detailed analytical formulations of finite pn-junctions, the interested reader
is referred to [1, 2].

References

1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)
2. H.G. Wagemann, H. Eschrich, Grundlagen der Photovoltaischen Energiewandlung (Teubner,

Stuttgart, 2010)



Appendix F
Boltzmann Transport Equation

In solids the one-electron states bear the quantum rules (k,S) with k D .kx; ky; kz/

and spin quantum number S. The latter (S D ˙1=2) accounts for the fact that
each k state can be occupied by two electrons (here S0 effects are neglected). The
quasi-classical description of the transport of an ensemble of species assumes that
the effect of external fields like an electric (E) and a magnetic field (B) lead to the
following equations of motion:

Pr D vn.k/ D 1

„
@�n.k/

dk
;

„ Pk D �e ŒE.r; t/C vn.k/ � B.r; t/�

This approach is valid if the carriers can be viewed as wave packets with an
uncertainty�k allowing a spatial confinement r to�r � 1=�k. Hence the behavior
of a charge carrier can be described by a distribution function f .k; r; t/ [1, 2]:

@f

@t
C PrrrŒf �C PkrkŒf � D @f

@t
jrelax

with the relaxation time approximation1

@f

@t
jrelax D f .k/ � f0.k/

m
;

containing the thermal-equilibrium distribution f0.k/.

1The representation of carrier scattering for wave vector and energy relaxation, which is controlled
by static and dynamic effects of carriers and the lattice are extremely complex; the easiest ansatz
thus consists of a phenomenological relaxation time constant m for particular cases determined by
respective experiments.
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Replacing Pr D v and Pk by a general force Pk D .1=„/F we arrive for stationarity
(@f=@t D 0) at

f .k/ D f0.k/C m.v � rrŒf �C .1=„/F � rkŒf �/

The stationary non-thermal-equilibrium distribution contains a term for spatial
variation of v � rrŒf � in which, e.g., a spatially dependent temperature and
concentration profiles generated by illumination can be accommodated, as well as
the external forces, .1=„/F � rkŒf �/.

For spatial homogeneous structures (rr D 0) and for small departures from
thermal equilibrium we approximate rvf .v/ � rvf0, and finally get

f D f0 C m.1=„/F � rkŒf0�;

which is known as Boltzmann’s linearization, in which the stationary non-
equilibrium distribution function has thus been related to the thermal-equilibrium
Fermi-Dirac distribution function f0.k/.

The expression of the external forces is usually replaced by

F
„ rk

�
f0
� D F

„
@f0
�
�.k/

�

@�
�rk

�
�.k/

� D F
„ �@f0.�/

@�
„rk! : (F.1)

With rk! D vgroup D „k=m�, we arrive at

F
„ �rk

�
f0
� D F

m� �k@f0.�/
@�

„ ; (F.2)

where F might represent an electric and/or magnetic field component, in which case
F D eE C ev � B.

In the quasi-classical approximation discussed here, the effect of the periodic
crystal potential on the dynamics of charge carriers is treated quantum mechanically
(via Bloch states). The wave packet formed of the states are than treated as classical
objects subject to external fields.

For semiconductors with typically only few carriers in the conduction and
valence bands, the Fermi-Dirac distribution function can be replaced by the
Boltzmann energy-distribution function, as been discussed in detail in Sect. 4.2.

As a consequence of the above linearization, in the particular case of spatial
homogeneity (rx D 0), where the only gradient is in the electrostatic potential, with
say an electric field E, a small perturbation of the thermal equilibrium distribution
in the wave vector space (k-space) results in a displacement of the symmetric
distribution by ık � E, as shown schematically in Fig. F.1.

For charge carrier transport in solar cells, the contribution of magnetic fields are
usually neglected, and the remaining driving forces are electric fields for drift of
charge carriers, concentration gradients for their diffusion, and—mostly neglected
as well—temperature gradients, which initiate thermoelectric transport effects.
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perturbed by
electric field Ex

thermal
eqilibrium

ky

kxδkx (ЄF-3kT) – (ЄF+3kT)

Fig. F.1 Schematic representation of electron distribution in k-space (spherical shape for cases
with � Ï k2) with perturbation of the kx-distribution by an electric field E D fEx ; 0 ; 0g,
(Ex < 0). Only electrons in the wave vector regime perturbed by the electric field (bold circle)
contribute to charge transport (in metals the main contribution to transport results from the regime
which spans approximately from (�F � 3kT) to (�F C 3kT) around the bold �F-contour line; in
semiconductors transport electrons and holes may be formulated by replacing the corresponding
Fermi-Dirac distribution function by the Boltzmann energy distribution)
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Spectral energy flow, 16
Spectral selective radiator, 35
Spectral selectivity, 36, 54
Spectrum splitting, 56, 184
Splitting of quasi-Fermi levels, 69, 73, 123,

145, 147
Spontaneous emission, 31
Spontaneous optical transition, 92, 93
Stefan–Boltzmann constant, 45
Stimulated emission, 31
Stimulated optical transition, 92, 93
Stokes shift, 170, 172
Sun, 9
Sunlight concentration, 168
Surface recombination, 75, 99, 134, 213
Surface recombination velocity, 214, 215, 219

Tail states, 138
Tandem cell, 180
Tauc plot, 92
Theoretical efficiency, 39
Thermoelectric effects, 106
Thermophotovoltaics, 198
Thin film absorbers, 135
Transition rates, 31
Transmission factor, 204
Triple cell, 180
Two-terminal device, 181

Undoped absorber, 122
Undoped semiconductor, 60
Upper limit of photovoltaic conversion, 76

Valence band, 31, 60, 86

Wave, electromagnetic, 11
Wave vector relaxation, 63
Window layer, 134
Work function, 140
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